Minimal surfaces in $S^{m}$ with Gauss curvature $\leq 0$
HTML articles powered by AMS MathViewer
- by Bang-yen Chen
- Proc. Amer. Math. Soc. 31 (1972), 235-238
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286000-6
- PDF | Request permission
Abstract:
Closed minimal surfaces in a unit $m$-sphere ${S^m}$ with Gauss curvature $K \leqq 0$ are considered.References
- Bang-yen Chen, Minimal hypersurfaces in an $m$-sphere, Proc. Amer. Math. Soc. 29 (1971), 375–380. MR 285999, DOI 10.1090/S0002-9939-1971-0285999-0
- S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, Ill., 1968) Springer, New York, 1970, pp. 59–75. MR 0273546 H. B. Lawson, Jr., Minimal varieties in constant curvature manifolds, Thesis, Stanford University, Stanford, Calif., 1969.
- H. Blaine Lawson Jr., Complete minimal surfaces in $S^{3}$, Ann. of Math. (2) 92 (1970), 335–374. MR 270280, DOI 10.2307/1970625
- H. Blaine Lawson Jr., The global behavior of minimal surfaces in $S^{n}$, Ann. of Math. (2) 92 (1970), 224–237. MR 270279, DOI 10.2307/1970835
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 235-238
- MSC: Primary 53.04
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286000-6
- MathSciNet review: 0286000