The game quantifier
HTML articles powered by AMS MathViewer
- by Yiannis N. Moschovakis
- Proc. Amer. Math. Soc. 31 (1972), 245-250
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286662-3
- PDF | Request permission
Abstract:
For structures that satisfy certain mild definability conditions we show the following result: A relation $R({x_1}, \cdots ,{x_n})$ has a positive first order inductive definition iff for some first order $Q(y,{x_1}, \cdots ,{x_n})$,References
- K. J. Barwise, R. O. Gandy, and Y. N. Moschovakis, The next admissible set, J. Symbolic Logic 36 (1971), 108–120. MR 300876, DOI 10.2307/2271519
- David Gale and F. M. Stewart, Infinite games with perfect information, Contributions to the theory of games, vol. 2, Annals of Mathematics Studies, no. 28, Princeton University Press, Princeton, N.J., 1953, pp. 245–266. MR 0054922
- H. Jerome Keisler, Finite approximations of infinitely long formulas, Theory of Models (Proc. 1963 Internat. Sympos. Berkeley), North-Holland, Amsterdam, 1965, pp. 158–169. MR 0202602
- S. C. Kleene, Hierarchies of number-theoretic predicates, Bull. Amer. Math. Soc. 61 (1955), 193–213. MR 70593, DOI 10.1090/S0002-9904-1955-09896-3
- Yiannis N. Moschovakis, Abstract first order computability. I, II, Trans. Amer. Math. Soc. 138 (1969), 427–464. MR 244045, DOI 10.1090/S0002-9947-1969-0244045-0
- Yiannis N. Moschovakis, Abstract computability and invariant definability, J. Symbolic Logic 34 (1969), 605–633. MR 270908, DOI 10.2307/2270854
- Yiannis N. Moschovakis, The Suslin-Kleene theorem for countable structures, Duke Math. J. 37 (1970), 341–352. MR 272628
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 245-250
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286662-3
- MathSciNet review: 0286662