MORITA DUALITY FOR ENDMORPHISM RINGS

ROBERT W. MILLER AND DARRELL R. TURNIDGE

Abstract. A ring R is said to have a left Morita duality with a
ring S if there is an additive contravariant equivalence between two
categories of left R-modules and right S-modules which include
all finitely generated modules in \mathcal{M}_R and \mathcal{M}_S respectively and which
are both closed under submodules and homomorphic images.

We show that for such a ring R the endomorphism ring of every
finitely generated projective left R-module P has a left Morita
duality with the endomorphism ring of a suitably chosen cofinitely
generated injective left R-module Q. Specialized to injective cogenerator rings and quasi-Frobenius rings our results yield results of
R. L. Wagoner and Rosenberg and Zelinsky giving conditions when
the endomorphism ring of a finitely generated projective left module
over an injective cogenerator (quasi-Frobenius) ring is an injective
cogenerator (quasi-Frobenius) ring.

1. Introduction. A ring R is said to have a left Morita duality with
a ring S if there is an additive contravariant equivalence between two
categories of left R-modules and right S-modules which include all
finitely generated modules in \mathcal{M}_R and \mathcal{M}_S respectively and which are
both closed under submodules and homomorphic images. Such a Morita
duality exists for R if and only if there exists an injective cogenerator
RU for \mathcal{M}_R such that U_S is an injective cogenerator for \mathcal{M}_S where $S = \text{End}(RU)$ and such that $R \cong \text{End}(U_S)$ via the natural mapping ([1],
[3], [5], and [6]).

Throughout the following we assume R has such a Morita duality
with S via a bimodule RU_S. Thus by [6] both R and S are semiperfect rings. For $M \in R\mathcal{M}$ ($N \in \mathcal{M}_S$), let $M^*_S = \text{Hom}_R(M, U)$ ($N^*_S = \text{Hom}_S(N, U)$). Then ()* defines additive contravariant functors from $R\mathcal{M} \to \mathcal{M}_S$ and $\mathcal{M}_S \to R\mathcal{M}$. A left R-module M (right S-module N) is
called U-reflexive if $RM \cong R^{M**} (NS \cong N^{**})$ via the natural mappings.
The class of U-reflexive modules includes all finitely generated modules in
$R\mathcal{M}$ (\mathcal{M}_S) and is closed under submodules and homomorphic images.
We show that for each finitely generated projective left R-module R^P the ring $A = \text{End}(R^P)$ has a left Morita duality with the ring $B = \text{End}(R^Q)$ for a suitably chosen cofinitely generated injective left R-module RQ. Specialized to injective cogenerator rings and quasi-Frobenius rings our results yield results of R. L. Wagoner [10] and Rosenberg and Zelinsky [7].

Throughout the following all rings have identity, all modules are unitary and maps are written opposite the scalars.

2. Results. A module can be shown to be finitely generated if and only if every ascending chain of proper submodules has proper union. Dually, a module is said to be cofinitely generated if every descending chain of nonzero submodules has nonzero intersection, or equivalently if it has finitely generated essential socle. (See [9].)

The following lemma lists several properties of the duality functor $(\)^\ast$ which will be required later.

2.1. Lemma. Let M be a left R-module. Then

(a) RM is simple if and only if M^\ast_S is simple.
(b) RM is finitely generated semisimple if and only if M^\ast_S is finitely generated semisimple.
(c) RM is finitely generated if and only if M^\ast_S is cofinitely generated.
(d) RM is finitely generated projective if and only if M^\ast_S is cofinitely generated injective.
(e) If RM is reflexive, then $(\text{Soc}(RM))^\ast_S \cong M^\ast_S/j(M^\ast_S)$.

Proof. (a) and (b) are left to the reader.
(c) For R^M reflexive and $N \subseteq M$ the map given by $N \rightarrow (M/N)^\ast$ yields a lattice anti-isomorphism between the lattice of submodules of RM and M^\ast_S.
(d) The “only if” follows by Baer’s criteria for injectivity. The “if” follows from the fact that for R^P finitely generated, R^P is projective if and only if R^P is R-projective. (See [2].)
(e) The socle of R^M is the largest semisimple submodule of RM. Hence since R^M is reflective we have $(\text{Soc}(R^M))^\ast_S \cong M^\ast_S/j(M^\ast_S)$, the largest semisimple factor module of M^\ast_S.

Throughout the remainder of this paper we let R^P denote a finitely generated projective left R-module and $A = \text{End}(R^P)$. Since R is semi-perfect, $R^P/j(R^P)$ is semisimple and contains a copy of each simple image of R^P. The following notation will be associated with R^P.

Let $P_R = \text{Hom}_R(P, R)$, $RQ = E(R^P/j(R^P))$ (RQ is cofinitely generated injective), $B = \text{End}(RQ)$, and $S\ Q^\ast = \text{Hom}_S(Q^\ast, S)$.

2.2. Proposition. Let the notation be as above. Then
(a) \(P_S^* \cong E(Q_S^*|J(Q_S^*)) \),
(b) for \(X \in \mathcal{M} \mathcal{R} \), \(\text{Hom}_R (P, X) = 0 \) if and only if \(\text{Hom}_R (X, Q) = 0 \),
(c) \(A = \text{End} (P_R^P) \cong \text{End} (P_R^P) \cong \text{End} (P_S^P) \).

Proof. (a) \(\text{Soc} (P_S^P) \cong (\text{R}P(\text{J}(P)))^* \cong (\text{Soc} (\text{R}Q))_S^* \cong Q_S^*|J(Q_S^*) \) where the isomorphisms follow by (e) of Lemma 2.1.

(b) Let \(0 \neq f \in \text{Hom} (P, X) \) and let \(M \) be a simple image of \(f(P) \) (and hence of \(P \)). Then \(\text{Hom} (M, Q) \neq 0 \) which implies \(\text{Hom} (X, Q) \neq 0 \) since \(RQ \) is injective. Next let \(0 \neq f \in \text{Hom} (X, Q) \). Let \(M \) be a simple submodule of \(f(X) \) (and hence of \(Q \)). Then \(\text{Hom} (P, M) \neq 0 \) which implies \(\text{Hom} (P, X) \neq 0 \) since \(P \) is projective.

(c) \(\text{End} (P_R^P) \cong \text{End} (P_R^P) \cong \text{End} (P_S^P) \) where the second isomorphism is induced by () * since \(R_P \) is reflexive.

2.3. Lemma. Let the notation be as above. Then \(A \mathcal{P}' \otimes RQ \) is an injective cogenerator for \(\mathcal{M} \mathcal{W} \) with \(B \cong \text{End} (A \mathcal{P}' \otimes RQ) \).

Proof. See Corollary 2 to Theorem 3.2 of [8].

2.4. Theorem. Let \(R \) have a left Morita duality with \(S \) via a bimodule \(R_US \). Let \(P_R \) be finitely generated projective and let \(\text{R}Q = E(P_J(P)) \). Then the ring \(A = \text{End} (\text{R}P) \) has a left Morita duality with the ring \(B = \text{End} (\text{R}Q) \) via the bimodule \(A \mathcal{P}' \otimes RQ_B \).

Proof. \(Q_S^* \) is finitely generated projective. \(P_S^* \cong E(Q_S^*|J(Q_S^*)) \) is cofinitely generated injective by (d) of Lemma 2.1. So as in Lemma 2.3, \(P_S^* \otimes S_S^* Q_B^* \) is an injective cogenerator for \(\mathcal{M}_B \) with \(A \cong \text{End} (P_S^* \otimes S_S^* Q_B^*) \). But \(A \mathcal{P}' \otimes S_S^* Q_B^* \cong \text{Hom}_S (Q_S^*, P_S^*) \cong \text{Hom}_R (P_R, RQ) \cong A \mathcal{P}' \otimes RQ_B \). The middle isomorphism follows by () * since everything in sight is reflexive. Thus \(A \mathcal{P}' \otimes RQ_B \) yields the required Morita duality.

3. Applications. A ring \(R \) is called an injective cogenerator ring if both \(R_R \) and \(R_R \) are injective cogenerators, i.e. if \(R_R R_R \) yields a Morita duality of \(R \) with itself. An injective cogenerator ring which is left (equivalently right) Artinian is called quasi-Frobenius.

Our results show that the endomorphism ring of a finitely generated projective right or left \(P \)-module has both a left and a right Morita duality if \(R \) is an injective cogenerator ring. In general the endomorphism ring of a finitely generated projective right \(R \)-module over a quasi-Frobenius ring can fail to be quasi-Frobenius [7].

R. L. Wagoner calls a module \(R_M \) an \(RZ \) module if it has the property that every simple homomorphic image of \(R_M \) is isomorphic to a simple submodule of \(R_M \). Using the notation of the preceding section one has that for \(R_P \) a finitely generated projective left \(R \)-module with \(R \) an injective
cogenerator ring, _R_ is an _RZ_ module if and only if _RQ_ is similar to _RP_.

Two modules are said to be similar if each is isomorphic to a direct summand of a finite direct sum of copies of the other. Specializing the above theorem to this setting we obtain the following results of R. L. Wagoner [10] and Rosenberg and Zelinsky [7].

3.1. Corollary. Let _R_ be an injective cogenerator ring. Let _RP_ be a finitely generated projective left _RZ_ module. Then _A_ = End (_RP_) is an injective cogenerator ring.

Proof. Let _RP_ be finitely generated projective. Since similar modules have Morita equivalent endomorphism rings [4] and _R_ is semiperfect we may assume _RP_ is a direct sum of nonisomorphic indecomposable projective (and injective) submodules. Via this reduction if _RP_ is an _RZ_ module _RQ_ ^ E(P) _RP_. Thus _A_ ^ _RP_ ^ yields a Morita duality for _A_ with itself. Thus _A_ is an injective cogenerator ring.

3.2. Corollary. Let _R_ be a quasi-Frobenius ring. Let _RP_ be a finitely generated projective left _RZ_ module. Then _A_ = End (_RP_) is quasi-Frobenius.

Proof. This follows from Corollary 3.1 and the fact that the endomorphism ring of a finitely generated projective left module over an Artinian ring is Artinian.

References

Department of Mathematics, Kent State University, Kent, Ohio 44242