Morita duality for endomorphism rings
HTML articles powered by AMS MathViewer
- by Robert W. Miller and Darrell R. Turnidge
- Proc. Amer. Math. Soc. 31 (1972), 91-94
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286847-6
- PDF | Request permission
Abstract:
A ring $R$ is said to have a left Morita duality with a ring $S$ if there is an additive contravariant equivalence between two categories of left $R$-modules and right $S$-modules which include all finitely generated modules in $_R\mathfrak {M}$ and ${\mathfrak {M}_S}$ respectively and which are both closed under submodules and homomorphic images. We show that for such a ring $R$ the endomorphism ring of every finitely generated projective left $R$-module $_RP$ has a left Morita duality with the endomorphism ring of a suitably chosen cofinitely generated injective left $R$-module $_RQ$. Specialized to injective cogenerator rings and quasi-Frobenius rings our results yield results of R. L. Wagoner and Rosenberg and Zelinsky giving conditions when the endomorphism ring of a finitely generated projective left module over an injective cogenerator (quasi-Frobenius) ring is an injective cogenerator (quasi-Frobenius) ring.References
- Goro Azumaya, A duality theory for injective modules. (Theory of quasi-Frobenius modules), Amer. J. Math. 81 (1959), 249–278. MR 106932, DOI 10.2307/2372855 —, $M$-projective and $M$-injective modules, Ring Theory Symposium Notes, University of Kentucky, Lexington, Ky., 1970.
- Kiiti Morita, Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 6 (1958), 83–142. MR 96700
- Bruno J. Müller, Dominant dimension of semi-primary rings, J. Reine Angew. Math. 232 (1968), 173–179. MR 233854, DOI 10.1515/crll.1968.232.173
- Bruno J. Müller, Linear compactness and Morita duality, J. Algebra 16 (1970), 60–66. MR 263875, DOI 10.1016/0021-8693(70)90040-2
- B. L. Osofsky, A generalization of quasi-Frobenius rings, J. Algebra 4 (1966), 373–387. MR 204463, DOI 10.1016/0021-8693(66)90028-7
- Alex Rosenberg and Daniel Zelinsky, Annihilators, Portugal. Math. 20 (1961), 53–65. MR 131446 F. L. Sandomierski, On $\operatorname {QF} - 3$ rings (to appear).
- P. Vámos, The dual of the notion of “finitely generated”, J. London Math. Soc. 43 (1968), 643–646. MR 248171, DOI 10.1112/jlms/s1-43.1.643
- Ronald L. Wagoner, Cogenerator endomorphism rings, Proc. Amer. Math. Soc. 28 (1971), 347–351. MR 276267, DOI 10.1090/S0002-9939-1971-0276267-1
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 91-94
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286847-6
- MathSciNet review: 0286847