Finite automorphic algebras over $\textrm {GF}(2)$
HTML articles powered by AMS MathViewer
- by Fletcher Gross
- Proc. Amer. Math. Soc. 31 (1972), 10-14
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286856-7
- PDF | Request permission
Abstract:
If $A$ is a finite nonassociative algebra over ${\text {GF}}(2)$ and $G$ is a group of automorphisms of $A$ such that $G$ transitively permutes the nonzero elements of $A$, then it is shown that either ${A^2} = 0$ or the nonzero elements of $A$ form a quasi-group under multiplication. Under the additional hypothesis that $G$ is solvable, the algebra $A$ is completely determined.References
- Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775β1029. MR 166261
- A. I. Kostrikin, On homogeneous algebras, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 471β484 (Russian). MR 0175943
- Donald Passman, Permutation groups, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0237627
- David L. Shaw, The Sylow $2$-subgroups of finite, soluble groups with a single class of involutions, J. Algebra 16 (1970), 14β26. MR 268280, DOI 10.1016/0021-8693(70)90037-2
- Ernest E. Shult, On finite automorphic algebras, Illinois J. Math. 13 (1969), 625β653. MR 248187
- Ernest E. Shult, On the triviality of finite automorphic algebras, Illinois J. Math. 13 (1969), 654β659. MR 248188
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 10-14
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286856-7
- MathSciNet review: 0286856