FINITE AUTOMORPHIC ALGEBRAS OVER GF(2)

FLETCHER GROSS

Abstract. If \(A \) is a finite nonassociative algebra over GF(2) and \(G \) is a group of automorphisms of \(A \) such that \(G \) transitively permutes the nonzero elements of \(A \), then it is shown that either \(A^2 = 0 \) or the nonzero elements of \(A \) form a quasi-group under multiplication. Under the additional hypothesis that \(G \) is solvable, the algebra \(A \) is completely determined.

All algebras considered in this paper are nonassociative. Shult [5] proved that if \(A \) is a finite automorphic algebra over GF(\(q \)) and \(q > 2 \), then either \(A^2 = 0 \) or \(A \) is a quasi division algebra. Here an automorphic algebra is one in which the automorphisms of the algebra transitively permute the one-dimensional subspaces. A quasi division algebra is an algebra in which the nonzero elements form a quasi-group under multiplication. One of the purposes of the present paper is to show that the restriction \(q > 2 \) in Shult’s Theorem is unnecessary. Actually a great deal of Shult’s argument still applies when \(q = 2 \). Where Shult’s proof breaks down for \(q = 2 \), the Feit-Thompson Theorem, a theorem on solvable transitive linear groups, and a number theoretic result of Shaw [4] combine to finish the proof.

If \(A \) is a finite automorphic algebra over GF(\(q \)), \(q > 2 \), and \(A^2 \neq 0 \), then Shult [6] showed that \(A = GF(q) \). For \(q = 2 \), we prove the weaker result that if \(A \) is a finite algebra over GF(2), \(A^2 \neq 0 \), and \(G \) is a solvable group of automorphisms of \(A \) such that \(G \) transitively permutes the nonzero elements of \(A \), then \(A \) is isomorphic to the algebra \(A(n, \mu) \) for some positive integer \(n \) and some nonzero element \(\mu \) in GF(2\(n \)). Kostrikin [2] obtained the same conclusion under the assumption that \(G \) is cyclic.

The algebra \(A(n, \mu) \) referred to above is defined as follows: Let \(K = GF(2^n) \) and let \(\mu \) be a fixed nonzero element of \(K \). For \(x \) and \(y \) in \(K \), define \([x, y] \) by the rule \([x, y] = \mu(xy)^{a_n-1} \). Then \(A(n, \mu) \) is the algebra over GF(2) obtained from \(K \) by replacing multiplication by \([,] \). \(A(n, \mu) \)
is an automorphic algebra since if \(\lambda \) is any nonzero element of \(K \), then the mapping \(x \rightarrow \lambda x \) for all \(x \in K \) is an automorphism of \(A(n, \mu) \). (With \(\mu = 1 \), the algebras \(A(n, \mu) \) also occur as examples in [6].)

Before proceeding to our main theorems, we require some preliminary results.

Lemma 1. If \(n, r, \) and \(a \) are nonnegative integers such that \(2^n \equiv 1 \pmod{r} \), \(rn \equiv 0 \pmod{2^n - 1} \), and \(2^n \equiv 1 \pmod{r} \), then \(a \equiv 0 \pmod{n} \).

This is proved by Shaw [4, Lemma 4].

Lemma 2. If \(n, r, a, b, c, \) and \(d \) are nonnegative integers such that \(2^n \equiv 1 \pmod{r} \), \(rn \equiv 0 \pmod{2^n - 1} \), and \(2^a + 2^b \equiv 2^c + 2^d \pmod{r} \), then \(a + b \equiv c + d \pmod{n} \).

Proof. This is certainly true if the sets \(\{a, b\} \) and \(\{c, d\} \) are the same modulo \(n \). If they are not, then it follows from [4, Lemma 5] that \(n = 6 \). In this case, the lemma is established by a straightforward examination of the possible values (mod \(n \)) of \(a, b, c, \) and \(d \).

Lemma 3. Let \(K = GF(2^n) \) and for \(0 \neq \lambda \in K \), let \(T_\lambda \) be the mapping of \(K \) defined by \(xT_\lambda = \lambda x \). Let \(R \) be the mapping \(xR = x^2 \). Let \(T \) be the group consisting of all \(T_\lambda \) for \(0 \neq \lambda \in K \), let \(U \) be the cyclic group generated by \(R \), and let \(L = TU \). Next suppose \(\mu \) is a fixed nonzero element of \(K \) and define \([x, y] \) for \(x \) and \(y \) in \(K \) by the rule \([x, y] = \mu(xy)^{2^{n-1}} \). If \(S \in L \) and \(ST_\mu = T_\mu S \), then \([xS, yS] = [x, y]S \) for all \(x \) and \(y \) in \(K \).

Proof. Let \(C \) be the subgroup of \(L \) consisting of those elements of \(L \) which commute with \(T_\lambda \). Clearly \(C \) contains \(T \) and it is easily verified that \([x, y]S = [xS, yS] \) for all \(S \in T \). Thus, to prove the lemma it suffices to show that \([x, y]S = [xS, yS] \) if \(S \in C \cap U \). If \(S \in C \cap U \), then we must have \(\mu S = \mu \). But then, since \(S \) is an automorphism of \(K \), the desired result follows immediately.

Lemma 4. Let \(K, T_\lambda, \) and \(T \) have the same meaning as in Lemma 3. Suppose that \(H \) is a subgroup of \(T \) such that \(|T|/|H| \) divides \(n \). If \(R \) is any nonzero homomorphism of the additive group of \(K \) into itself such that \(R \) commutes with all elements of \(H \), then \(R \in T \).

Proof. Since \(R \neq 0 \), there is an element \(x \) in \(K \) such that \(xR \neq 0 \). Let \(\lambda = x^{-1}(xR) \). Then \((R - T_\lambda) \) commutes with all elements of \(H \) and has nonzero kernel. By Lemma 1, \(H \) acts irreducibly on the additive group of \(K \). Schur’s Lemma now implies that \(R - T_\lambda = 0 \). Therefore \(R \in T \).

Theorem 1. Let \(A \) be a finite algebra over \(GF(2) \) and assume that \(B \) is a left ideal in \(A \) such that \(B^2 = 0 \). Assume that for each \(x \in A \), the linear
transformation \(L_y \) of \(B \) defined by \(L_y = xy \) for \(y \in B \) is a nilpotent transformation. Suppose further that \(G \) is a group of automorphisms of \(A \) such that \(B \) is \(G \)-invariant and \(G \) acts transitively on the nonzero elements of \(B \). Then \(AB = 0 \).

Proof. This corresponds to Theorem 4 of [5]. As in the proof of that theorem we may assume that there is a minimal counterexample \(A \) satisfying (in addition to the hypothesis of the theorem) the following:

(i) As a \(G \)-module, \(A \) is the direct sum of the \(G \)-invariant subspaces \(W \) and \(B \).

(ii) \(W^2 = B^2 = BW = 0 \neq WB \).

Proceeding exactly as in [4, steps (a) through (d)] we find that

(a) If \(w \in W \) and \(wB = 0 \), then \(w = 0 \).

(b) \(W \) is an irreducible \(G \)-module.

(c) \(B \) is a faithful \(G \)-module.

(d) \(G \) has odd order.

It follows from (d) and the Feit-Thompson Theorem [1] that \(G \) is solvable. If \(|B| = 2^n\), then Theorem 19.9 of [3] now implies that \(G \) has a normal cyclic subgroup \(C \) of order \(r \) where \(2^n \equiv 1 \pmod{r} \) and \(rn \equiv 0 \pmod{2^n - 1} \). By Lemma 1, \(C \) acts irreducibly on \(B \). As in step (h) of Shult’s proof, we conclude that \(C \) acts in a fixed-point-free manner on \(W \). Next, Shult’s proof of step (i) is applicable and so there are nonnegative integers \(a_1, a_2, b_1, b_2 \) such that \(a_1 \neq a_2 \pmod{n} \), \(b_1 \neq b_2 \pmod{n} \), but \(2^{a_1} + 2^{b_1+a_2} \equiv 2^{a_2} + 2^{b_2+a_1} \pmod{r} \). Lemma 2 now yields \(a_1 + b_1 + a_2 = a_2 + b_2 + a_1 \pmod{n} \) which contradicts \(b_1 \neq b_2 \pmod{n} \). Thus Theorem 1 is proved.

Theorem 2. If \(A \) is a finite automorphic algebra over GF(2), then either \(A^2 = 0 \) or \(A \) is a quasi division algebra.

Proof. This is derived from Theorem 1 by exactly the same process Shult uses to derive his Theorem 1 from his Theorem 4.

For the rest of this paper, with the exception of Theorem 4, we make the following assumptions: \(A \) is a finite algebra over GF(2), \(A^2 \neq 0 \), and \(G \) is a (not necessarily solvable) group of automorphisms of \(A \) which acts transitively on the nonzero elements of \(A \). If \(x \) and \(y \) belong to \(A \), the product of \(x \) and \(y \) will be denoted by \([x, y]\). \(S \) will denote the mapping \(x \rightarrow [x, x] \) for \(x \in A \). \(C \) will be the set of all homomorphisms of \(A \) into itself where \(A \) is considered as a \(G \)-module. By Schur’s Lemma, \(C \) is a division ring. Since \(C \) is finite, \(C \) is a field of characteristic 2. Finally let \(|A| = 2^n\).

Lemma 5. \([x, y] = [y, x]\) for all \(x \) and \(y \) in \(A \). If \(T \in C \), then \([x, yT] = [xT, y]\).
Proof. Suppose $T \in C$ and define $x \circ y$ by the rule $x \circ y = [x_T, y] + [y_T, x]$. Using this operation instead of multiplication we obtain a new algebra B. If $R \in G$, then $(x \circ y)R = (xR) \circ (yR)$ for all x and y in A. Hence B is an automorphic algebra. But $x \circ x = 0$ for all x since we are working over a field of characteristic 2. It now follows from Theorem 2 that $x \circ y = 0$ for all x and y. Thus $[x_T, y] = [y_T, x]$. With $T = 1$, we obtain $[x, y] = [y, x]$ and the lemma follows.

Corollary. $S \in C$.

Proof. $(x + y)S = xS + yS + [x, y] + [y, x] = xS + yS$. Clearly $(xS)T = (xT)S$ for all $T \in G$.

Lemma 6. If $T \in C$, then $[x, y]T = [x_T, y_T]$ for all x and y in A. Thus the nonzero members of C are automorphisms of A as an algebra.

Proof. Define $x \circ y$ by the rule $x \circ y = [x, y]T + [x_T, y_T]$. Using this instead of multiplication, we obtain a new algebra B. B is an automorphic algebra since $(x \circ y)R = (xR) \circ (yR)$ for all $R \in G$. Now $x \circ x = xST + xTS$. But, since C is a field, $ST = TS$. Thus $x \circ x = 0$. Theorem 2 implies that $x \circ y = 0$ for all x and y in A. Therefore, Lemma 6 is proved.

Theorem 3. If G is solvable, then A is isomorphic to $A(n, \mu)$ for some nonzero element μ in $GF(2^n)$.

Proof. If G is solvable, then we may identify the additive group of A with $GF(2^n)$ such that G is a subgroup of L where L has the same meaning as in Lemma 3. Let K, T_A, and T have the same meaning as in Lemma 3 and let $H = G \cap T$. Since $|L|T| = n$, $|G/H| = |TG/T|$ divides n. $(2^n - 1)$ divides $|G|$ since G transitively permutes the $(2^n - 1)$ nonzero elements of K. Hence $|T|H| = (2^n - 1)||H|$ divides $|G/H|$ which divides n. Lemma 4 now implies that every nonzero element of C belongs to T. Therefore $S = T_\mu$ for some nonzero μ in K. Now for x and y in K, define $x \circ y$ by the rule $x \circ y = [x, y] + \mu(xy)2^{n-1}$. Since $T_\mu = S$ commutes with all elements of G, Lemma 3 implies that $(x \circ y)R = (xR) \circ (yR)$ for all $R \in G$. Therefore, replacing $[,]$ by \circ, we obtain a new automorphic algebra B. Since for all x, $x \circ x = xS + \mu(x^2)2^{n-1} = xT_\mu + xT_\mu = 0$, B cannot be a quasi division algebra. Thus, Theorem 2 implies that $x \circ y = 0$ for all x and y in K. An immediate consequence of this is that A is isomorphic to $A(n, \mu)$.

It is natural to ask whether $A(n, \mu)$ and $A(m, \lambda)$ could be isomorphic. This is answered by our final result.

Theorem 4. $A(m, \lambda)$ and $A(n, \mu)$ are isomorphic if, and only if, $m = n$ and there is an automorphism S of $GF(2^n)$ such that $\lambda S = \mu$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Since $A(m, \lambda)$ has order 2^m, $A(m, \lambda)$ and $A(n, \mu)$ cannot be isomorphic if $m \neq n$. Now let $K = \text{GF}(2^n)$ and assume that λ and μ are two nonzero elements of K. Let $[x, y] = \lambda(xy)^{2^{n-1}}$ and $x \circ y = \mu(xy)^{2^{n-1}}$ for all x and y in K. Then $A(n, \lambda)$ and $A(n, \mu)$ are isomorphic if, and only if, there is a mapping S of K onto K such that $(x + y)S = xS + yS$ and $[x, y]S = (xS) \circ (yS)$ for all x and y in K. If S is an automorphism of K such that $\lambda S = \mu$, then S has the above properties and $A(n, \lambda)$ and $A(n, \mu)$ are isomorphic. Conversely, suppose S is a mapping of K onto K satisfying the above. If T_z is the mapping $x \to zx$, then ST_z also satisfies the above properties. Thus, without loss of generality, we may assume that $1S = 1$. From $[1, 1]S = (1S) \circ (1S) = 1 \circ 1$, we obtain $\lambda S = \mu$. From $[x, x]S = (xS) \circ (xS)$, we find that $\lambda xS = \mu(xS)$ for all x in K. Next $[x^2, 1]S = (x^2S) \circ (1S)$ implies that $(\lambda x)S = \mu(xS)^{2^{n-1}}$. Therefore, $(x^2S)^{2^{n-1}} = xS = ((xS)^2)^{2^{n-1}}$. Since we are working over a field of characteristic 2, this implies that $(x^2)S = (xS)^2$ for all $x \in K$. Finally, it follows from $[x^2, y^2]S = (x^2S) \circ (y^2S) = (xS)^2 \circ (yS)^2$ that $(\lambda xy)S = \mu((xy)S) = \mu(xS)(yS)$. An immediate consequence of this is that S is an automorphism of K which proves the theorem.

References

