$2$-generator groups and parabolic class numbers
HTML articles powered by AMS MathViewer
- by Morris Newman
- Proc. Amer. Math. Soc. 31 (1972), 51-53
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286896-8
- PDF | Request permission
Abstract:
It is shown that if $x,y$ are generators of the finite group $G$ such that ${x^p} = {y^q} = {(xy)^n} = 1$, where $p,q,n$ are integers $> 1,(p,q) = 1$, and $xy$ is of true order $n$, then the order $\mu = nt$ of $G$ satisfies $n \leqq pq{t^p}$. This result is used to show that if $F$ is a Fuchsian group of genus $0$ generated by 2 elliptic elements of coprime order and with 1 parabolic class, then $F$ possesses only finitely many normal subgroups having a given number of parabolic classes.References
- Robert D. M. Accola, On the number of automorphisms of a closed Riemann surface, Trans. Amer. Math. Soc. 131 (1968), 398–408. MR 222281, DOI 10.1090/S0002-9947-1968-0222281-6
- L. Greenberg, Note on normal subgroups of the modular group, Proc. Amer. Math. Soc. 17 (1966), 1195–1198. MR 199274, DOI 10.1090/S0002-9939-1966-0199274-4
- Morris Newman, Classification of normal subgroups of the modular group, Trans. Amer. Math. Soc. 126 (1967), 267–277. MR 204375, DOI 10.1090/S0002-9947-1967-0204375-3 H. Zassenhaus, Lehrbuch der Gruppentheorie, Teubner, Leipzig, 1937; English transl., Chelsea, New York, 1949. MR 11, 77.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 51-53
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286896-8
- MathSciNet review: 0286896