Generalized positive linear functionals on a Banach algebra with an involution
HTML articles powered by AMS MathViewer
- by Parfeny P. Saworotnow
- Proc. Amer. Math. Soc. 31 (1972), 299-304
- DOI: https://doi.org/10.1090/S0002-9939-1972-0287321-3
- PDF | Request permission
Abstract:
Let $A$ be a proper ${H^\ast }$-algebra and let $B$ be a Banach $\ast$-algebra with an identity. A linear mapping $\varphi :B \to A$ is called a positive $A$-functional if ${\Sigma _{i,j}}a_i^\ast \varphi (x_i^\ast {x_j}){a_j}$ is positive for all ${x_1},{x_2}, \cdots ,{x_n} \in B$ and ${a_1},{a_2}, \cdots ,{a_n} \in A$. It is shown that for each positive $A$-functional $\varphi$ there exists a $\ast$-representation $T$ of $B$ by $A$-linear operators on a Hilbert module $H$ such that $\varphi (x) = ({f_0},Tx{f_0})$ for all $x \in B$ and some ${f_0} \in H$. If $B$ is of the form $B = \{ \lambda e + x|\lambda$ complex, $e$ is the (abstract) identity, $x \in {L^1}(G)\}$ for some locally compact group $G$ then $\varphi$ has the form $\varphi (\lambda e + x) = \lambda \varphi (e) + \int {{\text { }}_G}x(t)p(t)dt$ for some generalized ($A$-valued) positive definite function $p$ on $G,x \in {L^1}(G)$.References
- Warren Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364–386. MR 13235, DOI 10.1090/S0002-9947-1945-0013235-8
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- George W. Mackey, Commutative Banach algebras, Notas Mat. 17 (1959), 210. MR 107184 M. A. Naimark, Normedrings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1959. MR 19, 870; 22 #1824.
- Parfeny P. Saworotnow, A generalized Hilbert space, Duke Math. J. 35 (1968), 191–197. MR 227749
- Parfeny P. Saworotnow, Representation of a topological group on a Hilbert module, Duke Math. J. 37 (1970), 145–150. MR 262837
- Parfeny P. Saworotnow and John C. Friedell, Trace-class for an arbitrary $H^{\ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 95–100. MR 267402, DOI 10.1090/S0002-9939-1970-0267402-9
- Parfeny P. Saworotnow, Trace-class and centralizers of an $H^{\ast }$-algebra, Proc. Amer. Math. Soc. 26 (1970), 101–104. MR 267403, DOI 10.1090/S0002-9939-1970-0267403-0
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 299-304
- DOI: https://doi.org/10.1090/S0002-9939-1972-0287321-3
- MathSciNet review: 0287321