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GENERALIZED POSITIVE LINEAR FUNCTIONALS ON A
BANACH ALGEBRA WITH AN INVOLUTION1

PARFENY P. SAWOROTNOW

Abstract. Let A be a proper //*-algebra and let B be a Banach

*-algebra with an identity. A linear mapping <p:B-*A is called

a positive ^-functional if a* (P(X*'x>)"i is positive for all xu

x2, ■ ■ ■, xn £ B and au a2, ■ ■ ■, an 6 A. It is shown that for each

positive /4-functional <p there exists a *-representation T of B by

^-linear operators on a Hilbert module H such that <p(x) =

(/„, Txf0) for all x £ B and some /0 £ H. If B is of the form B =

{ke + x I A complex, e is the (abstract) identity, x £ L'(G)} for some

locally compact group G then <p has the form <p(Ae + x) = Xcp(e) +

§0x(t)p(t)dt for some generalized (^-valued) positive definite

function p on G, x £ L\G).

1. The present work is a continuation of the study of Hilbert modules

[6], [7]. In the previous paper [7] we generalized the theorem which states

that each positive definite function on a group G is of the form p(t) =

(Utf0,f0) for some unitary representation U of G, where f0 is some member

of the Hilbert space on which U acts. In this paper we will generalize the

concept of a positive linear functional on a *-algebra and will prove that

each generalized positive functional cp on a Banach algebra B is of the

form (p(x) = (/„, Px/0) for some ^representation x —>- Tx of B by A-

linear operators on some Hilbert module.

Applying this result to a group algebra we shall derive an integral

representation of the generalized positive linear functional on P1(G) in

terms of an /7*-algebra valued positive definite function on G. In this way

we will establish generalizations of Theorem 2 in §17 and Theorem 2 in

§30 of [5].

2. Let A be a proper r7*-algebra [1] and let t(A) = {xy | x, y £ A} be its

trace-class [8]. It was shown in [8] that t(A) is a Banach algebra with

respect to some norm t( ) which is related to the norm | | of A by the

identity "t(a*a) = \a\2, aeA,\ There is a partial ordering defined on
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t(A) by the requirement that a ^ 0 if a = b*b for some b e A. Also there

is a trace tr defined on t(A) such that tr a = t(cj) if a ^ 0 and tr (xy*) =

tr = (x . y) for all x, y e A (here (.) denotes the scalar product on

A). For further details on r(A) the reader is referred to [8] and [9].

A right module H over A is called a Hilbert /1-module if there exists a

r(/l)-valued function (, ) on H x H having the following properties:

(i) If/, g,heHandaeA then (/ + g, h) = (/ h) + (g, h), (/ g)* =

te>A (/",£«) = (f,g)<>, (/>/) ^ 0 and |tr (/,g)|2 ^ r{fj)r{g,g).
(n) (//) = o if and only if/ = 0.

(iii) H is complete in the norm ||/|| = (t(//))1/2.

The function (,) is called generalized scalar product. There is a linear

structure on H such that H is an ordinary Hilbert space with respect to

the scalar product [/ g] = tr (g,f). An v4-linear operator on H is an

additive mapping T: H -> H such that T(fa) = (Tf)a for all/e H, a e A;

T is bounded in \\Tf\\ ^ A/ |j/|| for some M ^ 0 and all/e/7. Each
bounded /1-linear operator T is linear and its adjoint T* has the property

that (7/, g) = (/ T*g) for all / g e H.

3. Let 5 be a Banach algebra with the identity e and an involution

x-> x* such that |x*| = \x\ for all xeB and let i be a proper H*-

algebra (| | denotes the norm for each algebra).

Definition. A linear mapping cp:B^>-A is called a positive ^-func-

tional if af(p(xfXj)aj ^ 0 for all xt, x2, • • • , xn e B and ax, a2, • ■ • ,

aneA.

Lemma 1. If (pis a positive A-functional on B then q>(x*) = <p(x)*for all

xeB.

Proof. If a e A then the mapping x —► tr (a*<p(x)a) is a positive

linear functional on B and so tr (a*(p(x*)a) = (tr)~ (a*cp(x)a) for all

x e B, as it was shown on p. 96 of [3].2

Now let a, b e A. Then

4(9>(x*)a . Z>) = 4 tr b*(p(x*)a

= tr (a + b)*<p(x*)(a + b) - tr (a - *)*cp(x*)(a - /3)

+ z tr (a 4- ib)*<p(x*)(a + ib)

— i tr (a — ib)*(p(x*)(a — ib)

= (tr)~ [(a + 4)*?W(fl + b)] - (tr)" [(a - b)*<p(x)(a - b)}

+ i (tr)- [(a + ib)*<p(x)(a + ib)

- i (tr)- [(a - ib)*<p(x)(a - ib)]

= 4 (tr)" (a*(p(x)b) = 4 tr (cp(x)b)*a = 4(a . <p(x)b).

Thus q>{x*) = (p(x)* since a, 6 were arbitrary.

Here and below (tr)~ (■ • ■) denotes the complex-conjugate of tr (• • •)•



1972] POSITIVE LINEAR FUNCTIONALS ON A BANACH ALGEBRA 301

Let H be a Hilbert yl-module, let x ->■ 7x be a representation of B by

bounded ^4-linear operators on H (T is a homomorphism such that

7> = / and Tx* = r*x for all x e B) and let /„ 6 H. Then <p(x) =

(/0, Txf0) is a positive ^4-functional on B:

£a*9<x*x>, = 2 a*(f0, Tx*TxJ0)aj = h TxJ^, 2 TxJ0a\ 5: 0.
t.i i.i \ i t /

The converse is also true as it is stated in Theorem 1. A ^representation

T of B is said to be regular if 7x(/) = 0 for all x e B implies/ = 0 (in the

terminology of Naimark [5, §29]: Thas no degenerate subrepresentations).

Theorem 1. For each positive A-functional cp on a Banach algebra B

with an isometric involution (and an identity) there exists a Hilbert A-module

H, a regular *'-representation x^-Txby bounded A-linear operators on H

and f0e H such that <p(x) =(f0, Txf0) for all x e B.

Proof. Let K be the set of all formal expressions / = ]>J=i xia% Wlth

x^B, a{eA; if f = 2M with Jfie ß> bi6 A define (/>£?) =
2*.< ai9(x*yi)D)- Then it is easy to see that ( , ) has all the properties of a

generalized scalar product, except that (/,/) may be zero without /being

a zero expression. We define = (t(//))1/2 = (tr (/ f))1'2. Then || |j is

a seminorm on K and one can show as in Theorem 2 of [6] that

<f, g) ̂  11/11 • WgW for all/, ge*.
Let 9t = {/e AI (/,/) = 0}; then the last inequality implies that

(/, g) = 0 for all /e 9t, g e A. Also 91 is an ,4-submodule of K (since

r(fa,fa) = r((ff)aa*) ^ r(//) • r(aa*) if a e A). Let//' = A/91 and let
/7 be the completion of H' with respect to the norm of H' which is

induced by || || (we will denote this norm also by || ||). Then //is a Hilbert

module.

For each x e B we define an operator T'x on A by setting T'x(f) =

7"x(2iXiöi) = S«**»0«» then 7"* is /1-linear and we shall show that

\\T'x(f)\\ ^ |x| • 11/11 for all /el This inequality will imply both that
T'x induces some operator 7x on H' and that this operator 7x is bounded.

So let/ = 2 xiai m A be fixed. The linear functional

V>(y) = tr 2 at(p(xfyxj)aj

on /3 is positive and so it follows from the Section 4 in §10 of [5] that

IvOOl = Ijl f(e) for all y e B. Takingy = x*x we have:

||T'x(/)||2 = tr (T'xf, T'xf) = tr 2 a*cp(x*x*xxi)aj = tp(x*x)
i .0

^ \x*x\ ■ W(e) ̂ \x*\ ■ \x\ ■ tr 2 «M^K = \x\*" Iff-
i.i

Thus \\T'xf\\ ^ |x| • 11/II for all f e K and so T'x induces a bounded
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vl-linear operator Tx on H. We define f0 = limn een, where e is the identity

of B and en is as in the proof of Theorem 1 of [7] (/>(1) should be replaced

by 99(e) in the condition "p(l)e = ep(l) = 0 • • •").

4. If the algebra B has no identity then we can adjoin it to B and con-

sider the algebra Be = {Xe + x | x e B, X complex} as it was done, for

example, on p. 25 of [4] (or on p. 59 of [3]). We extend the involution to

Be by setting (Xe + x)* = Xe + x* and consider the norm \\Xe + x\\ =

Definition. A positive A-functional on B is a mapping 99:73-^-^4

such that there exists a positive yl-functional 95' on Be whose restriction

to B coincides with <p.

This definition enables us to apply Theorem 1 to a group algebra in

order to obtain a generalization of Theorem 2 in §30 of [5], which

establishes the correspondence between positive definite functions defined

on a topological group and (extendable) positive linear functionals defined

on the group algebra.

We will need a few lemmas.

Lemma 2. Let H be a Hilbert module over a proper H*-algebra A and

let T be a right centralizer [8] on A. Then there exists a bounded linear

operator T' on H such that T(f, g) = (T'f, g) for allf, g e H.

Proof. For a fixed feH the mapping b:g—>- T(f,g) is a bounded

^-linear functional on H (r(P(/,g)) < ||P|| • r(f,g) <: \\T\\ ■ \\f\\ • \\g\\
[9]). Thus [6, Theorem 3] there exists zf e H such that T(f, g) = (zf, g) for

all g g H and \\b\\ = \\zf\\ ̂  \\T\\ ■ ||/||. We define T'f=zf---.
Now let (S, p) be a measurable space and let h(s) be a mapping of S

into a Hilbert module H such that the r(/4)-valued function t(s) =

(g, h(s)) is Pettis integrable for each g e H. This in turn means that the

scalar valued function (pm(s) = m(g, h(s)) is Lebesgue integrable for each

m e t(A)* and there exists a member (P) J (g, h(s)) ds of t(A) such that

m((P) J (g, h(s)) ds) = j" m(g, h(s)) dp(s) for all m e t(A)*. This condition

could be restated as follows [9]: for each right centralizer T on A the

mapping s ->■ tr T(g, h(s)) is Lebesgue integrable and there exists

(P) j (g, h(s)) ds e t(A) such that

tr T (P) (g, h(s)) ds) =  tr T(g, h(s)) dp(s)  for all P e R(A).

Definition. We shall say that an //-valued function h(s) is P-integ-

rable if (g, h(s)) is Pettis integrable for all g e H and there exists P(h) e H

such that (g, P(h)) = (P) J (g, h(s)) ds for all g e H

W + \\x
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It was shown in [6] that H has also a structure of a Hilbert space with

respect to the (ordinary) scalar product [/, g] = tr (g,f). Therefore one

may speak about the Pettis integral of an /Y-valued function. It turns out

Lemma 3. A Hilbert module valued function h(s) is P-integrable if and

only if it is Pettis integrable; also P(h) = (P) f h(s) ds.

Proof. Taking T to be the identity operator we see at once that each

P-integrable function is Pettis integrable.

Conversely let h(s) be Pettis integrable. Then for each g e H and

TeR(A) = r(A)* [9] the function £(s) - tr T(g, h(s)) = tr (T'g, h(s)) is

Lebesgue integrable and

which means that (g, (P) J* h(s) ds) is the Pettis integral of (g, h(s)) (P' is as

in Lemma 2). But this simply means that h(s) is P-integrable and P(h) =

(P))h(s)ds.

5. We are now in a position to generalize Theorem 2 of §30 in [5].

Let G be a locally compact group; consider its group algebra D(G).

As it was defined above, a positive ^-functional on L}(G) is a linear

mapping (p:L1(G) —*■ A which has an extension q>' to

and the extension q>' is a positive ^-functional on L1(G)e. Positive definite

yl-function was defined in [7] as a mapping p:G^>-r(A) such that

2tj atpit^tjaj ^ 0 for tt e G, af e A.

Theorem 2. //p.G -* t(A) is a continuous (with respect to the norm

( )) positive definite A-function then the mapping t —>■ x(t)p(t) is both Pettis

and P-integrable for each x e P1(G) and the function <p(x) = j" x(t)p(t) dt

is a positive A-functional on P1(G). Conversely each positive A-functional

on V-(G) is of this form.

Proof. Let p be a continuous positive definite ^-function on G.

According to Theorem 1 of [7] there exists a continuous representation

t —>■ Ut of G by ^4-unitary operators on a Hilbert module H and a member

f0 of H such that p(t) = (Utf0,f0) for all t eG. But then the mapping

t —> Vt = Uf is also a continuous representation of G by /1-unitary

operators and so it follows from Theorem 2 of [7] that the mapping

x—>Tx = $g x(0Vt dt is a regular ""-representation of P1(G).

that both integrals coincide:

tr T(g, h(s)) dp(s) =  tr (T'g, h(s)) dp(s) = tr  T'g, (P) h(s) ds

Lx(G)e = {ke + a \ a e L}(G), X complex}
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Now note that the mapping t —>- x(t)Vtf is Pettis integrable for each

fe H and (P) JG x(t)Vtfdt = (f x(t)Vt dtjf for all/e H (the last integral
here has the same meaning as the corresponding integral in Theorem 2 of

[7]). It follows then from Lemma 3 above that

C/o, TxQ =       (jx(t)Vtdt}f^ = (f0, P(x(t)VJ0))

= (P) f x(0(/0, VJ0) dt = (P) f x(t)(Utf0,f0) dt
JO JG

= (P)£x(f)/X') dt = 9>(x)

for all x e L}{G). If we extend P to L^G)* by setting T(Xe + x) =

XI4- Px we see immediately that <p has an extension <p' defined by

<p'(Xe + x) = (/„, T(Xe + x)/0) = X(f0,f0) + (/„, Px/0) = X(f0,f0) + cp(x)
and that 9/ is a positive ^-functional on Lx(G)e\

The converse is also established in a similar manner. If 9? is a positive

^-functional on P1(G) then <p is of the form ^(x) = (/„, Px/0) for some

♦-representation P of P1(G) by ^-linear operators. It follows from

Theorem 2 of [7] that there exists a continuous representation t —> Ut of

G (by /1-unitary operators) such that Px = JG x{t)Ut dt for all x g L>(G).

Then />(?) = (Utf0,f0) is a positive /1-function and 99(f) = (/„, Px/0) =

JG x(0(/0, £/,/„) A = JG x(r)/»(f) for all x g L1(G).
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