Quasiharmonic classification of Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Mitsuru Nakai and Leo Sario
- Proc. Amer. Math. Soc. 31 (1972), 165-169
- DOI: https://doi.org/10.1090/S0002-9939-1972-0287488-7
- PDF | Request permission
Abstract:
In the study of the structure of the space of biharmonic functions it is often necessary to impose some nondegeneracy condition on the base manifold with respect to quasiharmonic functions (cf. [2], [4]). For this reason it is useful to introduce various quasiharmonically degenerate classes of Riemannian manifolds and to investigate relations among them. This is the purpose of the present note.References
- Corneliu Constantinescu and Aurel Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 32, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963 (German). MR 0159935
- Y. K. Kwon, L. Sario, and B. Walsh, Behavior of biharmonic functions on Wiener’s and Royden’s compactifications, Ann. Inst. Fourier (Grenoble) 21 (1971), no. 3, 217–226 (English, with French summary). MR 340633
- Carlo Miranda, Equazioni alle derivate parziali di tipo ellittico, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 2, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (Italian). MR 0087853
- M. Nakai and L. Sario, Biharmonic classification of Riemannian manifolds, Bull. Amer. Math. Soc. 77 (1971), 432–436. MR 278234, DOI 10.1090/S0002-9904-1971-12728-3
- L. Sario and M. Nakai, Classification theory of Riemann surfaces, Die Grundlehren der mathematischen Wissenschaften, Band 164, Springer-Verlag, New York-Berlin, 1970. MR 0264064
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 165-169
- DOI: https://doi.org/10.1090/S0002-9939-1972-0287488-7
- MathSciNet review: 0287488