Modules over the endomorphism ring of a finitely generated projective module
HTML articles powered by AMS MathViewer
- by F. L. Sandomierski
- Proc. Amer. Math. Soc. 31 (1972), 27-31
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288137-4
- PDF | Request permission
Abstract:
Let ${P_R}$ be a projective module with trace ideal $T$. An $R$-module ${X_R}$ is $T$-accessible if $XT = X.{\text { If }}{P_R}$ is finitely generated projective and $C$ is the $R$-endomorphism ring of ${P_R}$, such that $_C{P_R}$, then for ${X_R}$, Horn ${({P_R},{X_R})_C}$ is artinian (noetherian) if and only if ${X_R}$ satisfies the minimum (maximum) condition on $T$-accessible submodules. Further, if ${X_R}$ is $T$-accessible then Hom ${({P_R},{X_R})_C}$ is finitely generated if and only if ${X_R}$ is finitely generated.References
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- A. W. Goldie, The structure of prime rings under ascending chain conditions, Proc. London Math. Soc. (3) 8 (1958), 589–608. MR 103206, DOI 10.1112/plms/s3-8.4.589
- L. Silver, Noncommutative localizations and applications, J. Algebra 7 (1967), 44–76. MR 217114, DOI 10.1016/0021-8693(67)90067-1
- Kiiti Morita, Adjoint pairs of functors and Frobenius extensions, Sci. Rep. Tokyo Kyoiku Daigaku Sect. A 9 (1965), 40–71 (1965). MR 190183
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 27-31
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288137-4
- MathSciNet review: 0288137