MODULES OVER THE ENDMORPHISM RING OF A FINITELY GENERATED PROJECTIVE MODULE

F. L. SANDOMIERSKI

Abstract. Let P_R be a projective module with trace ideal T. An R-module X_R is T-accessible if $XT = X$. If P_R is finitely generated projective and C is the R-endomorphism ring of P_R, such that cP_R, then for X_R, $\text{Hom}(P_R, X_R)c$ is artinian (noetherian) if and only if X_R satisfies the minimum (maximum) condition on T-accessible submodules. Further, if X_R is T-accessible then $\text{Hom}(P_R, X_R)c$ is finitely generated if and only if X_R is finitely generated.

The purpose of the present paper is to investigate $\mathcal{O}\text{Hom}(C_P, X_R)$, where P_R is a finitely generated projective R-module and $C = \text{End}(P_R)$, the R-endomorphism ring of P, with respect to the properties of chain conditions and finite generation. Throughout this paper R is a ring with identity and all modules over R are unitary. The convention of writing module-homomorphisms on the side opposite the scalars is adopted here.

1. Preliminaries. Let P_R be a finitely generated projective R-module with $C = \text{End}(P_R)$ such that cP_R. The dual module of P_R is (with respect to RR), $R^{\ast}P_R = \text{Hom}(P_R, rRr)$. It is well known, see [1], that the map $P_R \rightarrow R^{\ast}P_R = \text{Hom}(R^{\ast}P_R, R)$ given by $p \rightarrow \hat{p}$, where $f\hat{p} = fp$, for $f \in P^\ast$ is an R-isomorphism.

Lemma 1.1. For P_R finitely generated projective, $C = \text{End}(P_R)$, the map $\text{End}(P_R) \rightarrow \text{End}(R^{\ast}P_R)$ given by $c \rightarrow \hat{c}$, where $f\hat{c} = fc$ is a ring isomorphism.

Proof. The above map is nothing more than the composite of the following maps

$$
\begin{array}{ccc}
\text{Hom}(P_R, P_R) & \xrightarrow{\text{Hom}(1, \delta_P)} & \text{Hom}(P_R, P_{R}^{\ast}) \\
& & t \downarrow \\
& & \text{Hom}(R^{\ast}P_R, R^{\ast}P_R)
\end{array}
$$

where t is the natural equivalence of functors in [2, Chapter II, Exercise 4].
Since δ_p is an isomorphism the lemma follows. Let P_R be a projective R-module and T the trace ideal of P. It is well known, e.g., see [3], that T is an idempotent two-sided ideal of R and $PT = P$.

Some results on the trace ideal of a projective module are listed in the proposition below.

Proposition 1.2. Let P_R be a projective module with trace ideal T, then:

(i) For X_R, $\text{Hom} (P_R, X_R) = 0$ if and only if $XT = 0$.

(ii) For X_R, $XT = X$ if and only if X_R is an epimorphic image of a direct sum (coproduct) of copies of P_R.

The proof of this proposition is an easy consequence of the definition and is left to the reader.

2. **Main results.** Throughout this section P_R denotes a finitely generated projective module, T its trace ideal, $C = \text{End} (P_R)$, $R^P_C = \text{Hom} (C P_R, R R)$ and, for X_R, $X'_C = \text{Hom} (C P_R, X_R)$.

Definition 2.1. (a) A module X_R is P-accessible if and only if $XT = X$.

(b) A module X_R is P-artinian (P-noetherian) if and only if X_R satisfies the minimum (maximum) condition on P-accessible submodules.

For a module X_R and M_C a submodule of X'_C, MP denotes the submodule of X_R generated by the images of P_R by homomorphisms in M_C. If Y_R is a submodule of X_R then $\text{Hom} (C P_R, Y_R) = Y'_C$ can be identified with a submodule of X'_C since $\text{Hom} (P_R, -)$ is (left) exact.

It is now clear that a submodule Y_R of X_R is P-accessible if and only if $Y = MP$ for some submodule M_C of X'_C. These facts will be used in what follows.

Theorem 2.2. For a module X_R, the correspondence $M_C \leftrightarrow MP$ is a one-to-one correspondence, inclusion preserving, between the submodules of X'_C and the P-accessible submodules of X_R.

Proof. Since MP is an R-submodule of X_R, the theorem will follow if $\text{Hom} (P_R, MP_R) = M$. Clearly $M \subseteq \text{Hom} (P_R, MP_R)$. Let $f \in \text{Hom} (P_R, MP_R)$, then let MP be a direct sum of M copies of P_R and denote by $\pi_m: MP \to P$ the mth projection map. Now the following diagram of R-modules and R-homomorphisms is commutative

\[
\begin{array}{cccc}
P & & & \\
\downarrow f' & \downarrow f & \downarrow \mu & \\
& MP & \to & MP \to 0 \quad (\text{exact})
\end{array}
\]

where $\mu x = \sum_{m \in M} m(\pi_m x)$ and f' exists since P_R is projective.
Since P is finitely generated there is a finite subset N of M such that $\pi_m f' p = 0$ for all $p \in P$ and all $m \notin N$. Now

$$fp = \mu f' p = \sum_{m \in N} m(\pi_m f' p) = \left(\sum_{m \in N} m(\pi_m f') \right) p$$

hence $f = \sum_{m \in N} m(\pi_m f')$. Since $\pi_m f' \in C$, $f \in M_C$ and the theorem follows.

Corollary 1. A module X_R is T-artinian (T-noetherian) if and only if X'_C is artinian (noetherian).

Corollary 2. If X_R is T-accessible then X_R is finitely generated if and only if X'_C is finitely generated.

Proof. A well-known characterization of finitely generated modules is the following: A module X_R is finitely generated if and only if every totally ordered subset, by inclusion, of proper submodules of X_R has a proper submodule of X_R for its union (least upper bound). By the theorem since X_R is T-accessible X'_C is finitely generated if and only if the union of a totally ordered set of proper T-accessible submodules of X_R is a proper submodule of X_R, hence if X_R is finitely generated so is X'_C.

Conversely, suppose X'_C is finitely generated and $\{Y_i\}_I$, I some index set, is a totally ordered subset of proper submodules of X_R. If $\bigcup_I Y_i = X$, then $\bigcup_I TY_i = TX = X$, hence it is sufficient to show that $\bigcup_I TY_i \neq X$. If $\bigcup_I TY_i = X$ then let $(TY_i)' = M_i \subseteq X'_C$. Since P_R is finitely generated it follows that $X'_C = \text{Hom}(P_R, \bigcup TY_i) = \bigcup M_i$, a contradiction to the finite generation of X'_C since $M_i \neq X'$, for if $M_i = X'$, $M_i P = TY_i = X$ and the corollary follows.

Corollary 3. If $0 \rightarrow U_R \rightarrow V_R \rightarrow W_R \rightarrow 0$ is exact then V_R is T-artinian, respectively T-noetherian, if and only if U_R and W_R are T-artinian, respectively T-noetherian.

Proof. Since P_R is projective $0 \rightarrow U'_C \rightarrow V'_C \rightarrow W'_C \rightarrow 0$ is exact and the corollary follows from an analogous result for modules and Corollary 1.

It is well known, e.g., [4], that the functors $\text{Hom}(cP_R, X_R)$ and $X \otimes_R P_C^*$ are naturally equivalent as functors of X_R, hence all previous results can be stated replacing X'_C with $X \otimes_R P_C^*$.

In view of Lemma 1.1, $R P_C^* = \text{Hom}(cP_R, R R_R)$, an endomorphism of $R P^*$ is given by a unique $c \in C$, namely if $d \in \text{End}(R P^*)$, there is a unique $c \in C$ such that $fd = fc$ for every $f \in P^*$. With this identification the following is valid.

Corollary 4. $R T$ is finitely generated if and only if cP is finitely generated.
\textbf{Proof.} $c_P \cong \text{Hom}_R(P, R_T)$ so by Corollary 2, the above follows. Some obvious results of the preceding are listed in the next proposition without proof.

\textbf{Proposition 2.3.} If P_R, C are as in Theorem 2.2, then

(i) If R_R is artinian (noetherian), so is C_C.

(ii) If R_R is artinian (noetherian), so is P_P^\ast.

(iii) If X_R is artinian (noetherian), so is $\text{Hom}_R(c_P, X_R)_C$.

Now will be taken up the problem of whether direct sums in the correspondence of Theorem 2.2 are preserved. Since P_R is finitely generated, it follows that if $\sum_i X_i$ is a direct sum of submodules of X_R, then $(\sum_i X_i)' = \sum_i X_i'$ is a direct sum of C submodules of X_C.

For the question of whether $\sum_i M_iP = (\sum_i M_i)P$ is a direct sum whenever $\sum_i M_i$ is a direct sum of C submodules of X_C, the following notion will be useful.

\textbf{Definition 2.4.} For the module X_R, T is X-faithful if $xT \neq 0$ for each $0 \neq x \in X$.

\textbf{Theorem 2.5.} Let X_R be such that T is X-faithful, then if $\sum_i M_i$ is a direct sum of C submodules of X_C, then $\sum_i M_iP$ is a direct sum of R submodules of X_R.

\textbf{Proof.} For an index $j \in I$,

\[[M_jP \cap (\sum_{i \neq j} M_iP)]' \subseteq (M_jP)' \cap (\sum_{i \neq j} M_iP) \subseteq M_j \cap \sum M_i = 0, \]

where the last inclusion follows from the facts that $(M_jP)' = M_i$ and since P_R is finitely generated,

\[\left(\sum_{i \neq j} M_iP \right)' \subseteq \sum_{i \neq j} (M_iP)' = \sum M_i. \]

Now by Proposition 1.1,

\[T \left[M_jP \cap \left(\sum_{i \neq j} (M_iP) \right) \right] = 0 \]

and since T is X-faithful, $M_jP \cap (\sum_{i \neq j} M_iP) = 0$ and the theorem follows.

\textbf{Corollary 1.} \textit{If T is X_R-faithful and X_R has finite Goldie dimension, see [3], X_C has finite Goldie dimension.}

\textbf{Corollary 2.} \textit{If R_T is faithful with finite Goldie dimension, then C_C has finite Goldie dimension.}
PROOF. It is sufficient to show T is P-faithful. Since P_R is a direct summand of a free R-module, if $xT = 0$ for some $0 \neq x \in P$, $rT = 0$ for some $0 \neq r \in R$, a contradiction, so T is P-faithful.

REFERENCES

DEPARTMENT OF MATHEMATICS, KENT STATE UNIVERSITY, KENT, OHIO 44240