A NONARCHIMEDEAN THEORY OF ANALYTIC CONTINUATION IN SEVERAL VARIABLES

A. I. THALER

Abstract. Recently B. Dwork proved the validity of the functional equation, conjectured by A. Weil, for a nonsingular projective hypersurface defined over a finite field. The proof made use of work of M. Krasner, wherein a uniqueness theorem for an analog of analytic continuation in ultrametric spaces is proved. The methods involved give information concerning the behavior of the undetermined factor ± 1 in the functional equation for such a hypersurface if one of the coefficients of the polynomial is varied. In this paper, Krasner's result is extended to a uniqueness theorem for analytic elements in n variables. This result will be applied to the Weil zeta function in a later work.

1. Preliminaries. Let \mathbb{R} be an algebraically closed field complete with respect to a nonarchimedean rank one valuation $x \to \text{ord } x$ with value group $G \subset R$, where R denotes the additive group of real numbers. We shall assume that G is dense in R. For $b \in R$, we define $\Gamma_b = \{ \xi \in \mathbb{R} : \text{ord } \xi = b \}$. Let \mathfrak{O} denote the valuation ring of \mathbb{R}, $\mathfrak{O} = \bigcup_{b \in G} \Gamma_b$, and let \mathfrak{P} denote the ideals of nonunits in \mathfrak{O}, $\mathfrak{P} = \bigcup_{b \in G} \Gamma_b$. It will occasionally be convenient to use the notation $|x| = p^{-\text{ord } x}$, where p is the characteristic of the residue class field of \mathbb{R}, denoted by k.

The following definition is due to Krasner [2].

Definition 1.1. Let D be a subset of the "projective field" $\mathbb{R}^* = \mathbb{R} \cup \{ \infty \}$. We say that D is a quasi-connected domain of \mathbb{R}^* if, for every $\alpha \in D \cap \mathbb{R}$, the following property is satisfied: for every $\xi \in D$, the set

$$H_\xi = \{ |x - \alpha| : x \in \mathbb{R} - D, |x - \alpha| < |\xi - \alpha| \}$$

is a finite set.

Lemma 1.2. Let $\zeta_1, \zeta_2, \ldots, \zeta_r$ be distinct elements of \mathfrak{O}; then there is an element ξ of \mathfrak{O} such that $|\xi - \zeta_i| = 1$ for $i = 1, 2, \ldots, r$.

This is a special case of Lemma 1 of [3], and so we may omit the proof.
Proposition 1.3. Let \(f(x) \in \mathcal{O}[x], f \neq 0 \). For any positive number \(\delta \), the sets
\[
W_\delta(f) = \{ \xi \in \mathcal{O} : |f(\xi)| > \delta \}, \quad W^\#_\delta(f) = \{ \xi \in \mathcal{O} : |f(\xi)| \geq \delta \}
\]
are quasi-connected.

Proof. Let \(f(x) = (x - \zeta_1)^{\epsilon_1} \cdots (x - \zeta_r)^{\epsilon_r}(x\beta_1 - 1)^{\epsilon_1} \cdots (x\beta_s - 1)^{\epsilon_s} \), \(\zeta_1, \zeta_2, \ldots, \zeta_r \) distinct elements of \(\mathcal{O} \), \(\beta_1, \beta_2, \ldots, \beta_s \) distinct nonunits in \(\mathcal{O} \). For \(\delta \geq 0 \), let \(R_\delta, R^\#_\delta \) be sets of real \(r \)-tuples defined by
\[
R_\delta = \{ (\delta_1, \ldots, \delta_r) : \delta_1^\epsilon_1 \cdots \delta_r^\epsilon_r > \delta, 0 \leq \delta_i \leq 1, i = 1, \ldots, r \},
\]
\[
R^\#_\delta = \{ (\delta_1, \ldots, \delta_r) : \delta_1^\epsilon_1 \cdots \delta_r^\epsilon_r \geq \delta, 0 \leq \delta_i \leq 1, i = 1, \ldots, r \},
\]
and, for any \(r \)-tuple \((\delta_1, \ldots, \delta_r) \), let \(W(\delta_1, \ldots, \delta_r) = \{ \xi \in \mathcal{O} : |\xi - \zeta_i| \geq \delta_i, i = 1, 2, \ldots, r \} \). Since, as is clear from Definition 1.1, a disk from which finitely many (open or closed) disks have been removed is a quasi-connected domain, it follows that, for any \(r \)-tuple \((\delta_1, \ldots, \delta_r) \), the set \(W(\delta_1, \ldots, \delta_r) \) is quasi-connected.

Let us consider the collections
\[
C_\delta = \{ W(\delta_1, \ldots, \delta_r) : (\delta_1, \ldots, \delta_r) \in R_\delta \},
\]
\[
C^\#_\delta = \{ W(\delta_1, \ldots, \delta_r) : (\delta_1, \ldots, \delta_r) \in R^\#_\delta \}.
\]
It is noted that, for any \(\delta \), \(C_\delta \) is a subfamily of \(C^\#_\delta \), and that \(C_\delta \) (respectively \(C^\#_\delta \)) is an empty family of sets if \(\delta \geq 1 \) (respectively \(\delta > 1 \)). We now recall that, in the terminology of Krasner, a family \(F \) of sets is said to be linked if any two sets \(A, B \) of \(F \) can be joined by a chain, that is to say a finite collection \(A = C_0, C_1, \ldots, C_m = B \) of sets of the family such that any two consecutive terms \(C_i, C_{i+1} \) are nondisjoint, and we assert that the collections \(C_\delta, C^\#_\delta \) are either empty or linked families of quasi-connected sets. In fact, we are able to prove a stronger statement, namely that for any choice of \(\delta \) in the closed unit interval, there is an element \(\xi \in \mathcal{O} \) common to each member of the family \(C^\#_\delta \). For, according to Lemma 1.2, an element \(\xi \) of \(\mathcal{O} \) may be chosen satisfying \(|\xi - \zeta_i| = 1, i = 1, 2, \ldots, r \), and therefore, since \((\delta_1, \ldots, \delta_r) \in C^\#_\delta \) entails \(\delta_i \leq 1 \) for all \(i \), the assertion follows. But then, by a theorem of Krasner in the cited reference, the sets \(\bigcup_{W \in C_\delta} W, \bigcup_{W \in C^\#_\delta} W \) are quasi-connected, for any nonnegative \(\delta \) (note that the empty set is trivially a quasi-connected domain). Our desired result then follows from the observations that these latter unions are the sets \(W_\delta(f) \) and \(W^\#_\delta(f) \), respectively.

Definition 1.4. Let \(V \) be a subset of \(\mathbb{R}^n \), \(j \) a positive integer, \(1 \leq j \leq n \), and \((a_1, a_2, \ldots, a_{n-1}) \in \mathbb{R}^{n-1} \). The symbol \(V^{(j)}(a_1, \ldots, a_{n-1}) \) denotes the subset of \(\mathbb{R} \) defined by
\[
V^{(j)}(a_1, \ldots, a_{n-1}) = \{ x \in \mathbb{R} : (a_1, \ldots, a_{j-1}, x, a_j, \ldots, a_{n-1}) \in V \}.
\]
If V has the property that, for each integer j, $1 \leq j \leq n$, and for each $(n - 1)$-tuple $(a_1, \cdots, a_{n-1}) \in \mathbb{R}^{n-1}$, the set $V^{(j)}(a_1, \cdots, a_{n-1})$ is a quasi-connected domain, the set V is said to be \textit{axially quasi-connected}.

Corollary 1.5. For $R(X_1, X_2, \cdots, X_n) \in \mathcal{O}[X_1, X_2, \cdots, X_n]$ let $W = \{ (\xi_1, \xi_2, \cdots, \xi_n) \in \mathbb{R}^n : \text{ord } R(\xi_1, \xi_2, \cdots, \xi_n) = 0 \}$. Then the set W is axially quasi-connected.

Proof. Let j be any integer between 1 and n, and let $R^*_j(x) \in \mathcal{O}[x]$ be defined by

$$R^*_j(x) = R(a_1, \cdots, a_{j-1}, x, a_j, \cdots, a_{n-1}),$$

where a_1, \cdots, a_{n-1} are arbitrarily chosen elements of \mathcal{O}; then $W^{(j)}(a_1, \cdots, a_{n-1})$ is either empty or equal to $W^*_j(R^*_j)$, and the preceding proposition applies.

2. **Uniqueness theorem.** In this section, a uniqueness theorem for analytic elements in several variables, generalizing the one-variable theory of Krasner, is proved. We do not claim to have a completely satisfactory generalization of Krasner's concept of a quasi-connected domain; in particular, while it is not sufficient only to assume that a subset of \mathbb{R}^n be axially quasi-connected, it seems as though our definition of W in the statement of the theorem is overly restrictive. However, it is only regions so defined with which we will be concerned in [4].

It is necessary to introduce some new ideas before the uniqueness theorem is stated.

Definition 2.1. Let $\xi = (\xi_1, \xi_2, \cdots, \xi_n)$, $\eta = (\eta_1, \eta_2, \cdots, \eta_n)$ be a pair of elements of \mathbb{R}^n; we say that ξ is \textit{directly axially joined} to η if $\xi_i = \eta_i$ for all but possibly one of the indices $i = 1, 2, \cdots, n$. If U is a subset of \mathbb{R}^n, and if ξ, η are elements of U, we say that ξ and η are U-\textit{axially joined} if there is a sequence $\eta = \xi^{(0)}, \xi^{(1)}, \cdots, \xi^{(N)} = \xi$ with the property that, for $i = 0, 1, 2, \cdots, N$, $\xi^{(i)} \in U$, and, for $i = 1, 2, \cdots, N$, $\xi^{(i-1)}$ is directly axially joined to $\xi^{(i)}$.

It is clear from the definition that "is U-axially joined to" is an equivalence relation.

Definition 2.2. For $U \subseteq W \subseteq \mathbb{R}^n$, we define the \textit{axial join of U in W}, W', by

$$W' = \{ \xi \in W : \xi \text{ is } W\text{-axially joined to an element of } U \}.$$

Proposition 2.3. If $R(X_1, X_2, \cdots, X_n) \in \mathcal{O}[X_1, X_2, \cdots, X_n]$, ord $R(0, 0, \cdots, 0) = 0$, let $W = \{ (\xi_1, \cdots, \xi_n) \in \mathbb{R}^n : \text{ord } R(\xi_1, \cdots, \xi_n) = 0 \}$ and let $\rho_1, \rho_2, \cdots, \rho_n$ be a set of positive numbers such that $U = \Gamma_{\rho_1} \times \Gamma_{\rho_2} \times \cdots \times \Gamma_{\rho_n}$ is not empty. Then, if W' denotes the axial join of U in W, $W' = W$.
Proof. If \(n = 1 \), any two elements of \(\mathcal{R} \) are directly axially joined, and so \(W' = W \) trivially.

Assume the validity of the proposition for polynomials in \(n - 1 \) variables with coefficients in \(\mathbb{O} \), \(n \geq 2 \), and let \((\psi_1, \ldots, \psi_n) \in W\). We shall construct an element \((\eta_1, \eta_2, \ldots, \eta_n) \in U\) which is \(W \)-axially joined to \((\psi_1, \psi_2, \ldots, \psi_n)\).

Consider the image \(\tilde{R}(x_1, \ldots, x_n) \) of \(R(x_1, \ldots, x_n) \) under the residue class map: it follows from the definition of \(W \) that, if \(\tilde{\xi} \) denotes the residue class of \(\xi \) under reduction mod \(\mathbb{P} \), \((\xi_1, \ldots, \xi_n)\) is an element of \(W \) if and only if \(\tilde{R}(\tilde{\xi}_1, \ldots, \tilde{\xi}_n) \neq 0 \). Let the polynomials \(\tilde{R}', \tilde{R}_0 \) in \(k[X_n] \) be defined by

\[
\tilde{R}_0(x_n) = \tilde{R}(0, 0, \ldots, 0, x_n), \quad \tilde{R}'(x_n) = \tilde{R}(0, 0, \ldots, 0, x_n);
\]

since \(\tilde{R}_0(0)\tilde{R}'(\psi_n) \neq 0 \), the product of these two polynomials is not the zero polynomial. But \(k \) is infinite, so the existence of an element \(\eta \) of \(\mathbb{O} \) with the property \(\tilde{R}(\tilde{\eta})\tilde{R}_0(\tilde{\eta}) \neq 0 \) is guaranteed.

Let \(R^*(x_1, x_2, \ldots, x_{n-1}) = R(x_1, x_2, \ldots, x_{n-1}, \eta) \) and put \(W^* = \{(\xi_1, \xi_2, \ldots, \xi_{n-1}) \in \mathbb{O}^{n-1}; \text{ord } R^*(\xi_1, \xi_2, \ldots, \xi_{n-1}) = 0\}; \) then \(\text{ord } R^*(0, 0, \ldots, 0) = 0 \) and \((\psi_1, \psi_2, \ldots, \psi_{n-1}) \in W^* \), and therefore, by the induction hypothesis, \((\psi_1, \psi_2, \ldots, \psi_{n-1})\) is \(W^* \)-axially joined to an element \((\eta_1, \eta_2, \ldots, \eta_{n-1}, \eta) \in \Gamma_{\rho_1} \times \Gamma_{\rho_2} \times \cdots \times \Gamma_{\rho_{n-1}} \). Thus, if we choose any element \(\eta_n \) of \(\Gamma_{\rho_n} \), the conclusion follows from the fact that \((\psi_1, \psi_2, \ldots, \psi_{n-1}, \eta)\) and \((\psi_1, \psi_2, \ldots, \psi_n)\) are directly axially joined, \((\eta_1, \eta_2, \ldots, \eta_{n-1}, \eta)\) and \((\eta_1, \eta_2, \ldots, \eta_n)\) are axially joined, and \((\xi_1, \xi_2, \ldots, \xi_{n-1}) \in W^* \) if and only if \((\xi_1, \xi_2, \ldots, \xi_{n-1}, \eta) \in W\).

Remark 2.4. If \(\xi = (\xi_1, \xi_2, \ldots, \xi_n) \), \(\eta = (\eta_1, \eta_2, \ldots, \eta_n) \) are elements of \(\mathbb{O}^n \), and if \(\tilde{\xi}_i = \tilde{\eta}_i \), \(i = 1, 2, \ldots, n \), then \(\xi \in W \) if and only if \(\eta \in W \).

Theorem 2.5. For \(R(x_1, x_2, \ldots, x_n) \in \mathbb{O}[x_1, x_2, \ldots, x_n], \)

\(R(0, 0, \ldots, 0) \in \Gamma_0 \), let \(W = \{(\xi_1, \ldots, \xi_n) \in \mathbb{O}^n; \text{ord } R(\xi_1, \ldots, \xi_n) = 0\} \), and let \(\{f_m(x_1, x_2, \ldots, x_n), g_m(x_1, x_2, \ldots, x_n)\}, m = 1, 2, 3, \ldots \), be sequences of rational functions defined on \(W \) and converging uniformly to functions \(f(x_1, x_2, \ldots, x_n) \) and \(g(x_1, x_2, \ldots, x_n) \), respectively, on \(W \). Suppose, for some set of positive numbers \(\rho_1, \rho_2, \ldots, \rho_n \), the set \(U = \Gamma_{\rho_1} \times \Gamma_{\rho_2} \times \cdots \times \Gamma_{\rho_n} \) is not empty and \(f(x_1, x_2, \ldots, x_n) = g(x_1, x_2, \ldots, x_n) \) on \(U \). Then \(f(x_1, x_2, \ldots, x_n) = g(x_1, x_2, \ldots, x_n) \) identically on \(W \).

Proof. Let \(\xi \) be any element of \(W \). Then, by Proposition 2.3, there is an element \(\eta \) of \(U \) and a sequence \(\eta = \xi^{(0)}, \xi^{(1)}, \ldots, \xi^{(N)} = \xi \) of elements of \(W \) such that adjacent members of the sequence are directly axially joined. The theorem will follow from construction of a sequence
Theorem 2.1 states that \(\Xi^{(0)} \), \(\Xi^{(1)} \), \(\cdots \), \(\Xi^{(N)} \) of sets, each of which satisfies the conditions:

1. \(\Xi^{(i)} \subseteq \mathcal{W} \).
2. For any choice of \(j, 1 \leq j \leq n \), and any element \(\xi = (\xi_1, \xi_2, \cdots, \xi_n) \) of \(\Xi^{(i)} \), the set
 \[\Xi_{j,i}^{(i)} = \{ (\xi_1, \xi_2, \cdots, \xi_{j-1}, \xi_j, \xi_{j+1}, \cdots, \xi_n) \in \Xi^{(i)} \} \]
 has \(\xi_j \) as a limit point.
3. \(\xi^{(0)} \in \Xi^{(0)} \).
4. If \((\xi_1, \cdots, \xi_n) \in \Xi^{(i)} \), then \(f(\xi_1, \cdots, \xi_n) = g(\xi_1, \cdots, \xi_n) \).

Such a sequence is constructed inductively. If the initial member \(\Xi^{(0)} \) is set equal to \(U \), it follows from the hypothesis that \(\Xi^{(0)} \) satisfies the four conditions.

Now, let \(0 \leq i < N \), and suppose the set \(\Xi^{(i)} \) has been chosen in such a manner that conditions (1)--(4) are satisfied. Let

\[\Xi^{(i+1)} = \bigcup_{j=1}^{n} \{ (\xi_1, \xi_2, \cdots, \xi_{j-1}, \eta_j, \xi_{j+1}, \cdots, \xi_n) \in \mathcal{W} : \]

\[\text{for some } \xi_j, (\xi_1, \cdots, \xi_j, \cdots, \xi_n) \in \Xi^{(i)}. \]

It is obvious that \(\Xi^{(i+1)} \) so defined satisfies the first of our conditions.

Suppose \(\psi = (\psi_1, \cdots, \psi_n) \in \Xi^{(i+1)} \); if \(j \) is any integer, \(1 \leq j \leq n \), we must show that \(\Xi^{(i+1)} \) has \(\psi_j \) as a limit point. But \(\psi \in \Xi^{(i+1)} \) implies the existence of an integer \(j' \), \(1 \leq j' \leq n \), and an element \(\xi = (\xi_1, \cdots, \xi_n) \in \Xi^{(i)} \) such that \(\psi_i = \xi_i \) if \(i \neq j' \). If \(j' = j \), Remark 2.4 implies that all elements congruent to \(\psi_j \) mod \(\mathfrak{P} \) are in \(\Xi^{(i+1)} \), and so \(\psi_j \) is certainly a limit point of this latter set. On the other hand, if \(j' \neq j \), we use the fact that \(\xi_j \) is a limit point of \(\Xi^{(i)} \). Thus, we can choose an infinite subset \(\{ \xi_{j,l} \}, l = 0, 1, 2, \cdots, \) of \(\Xi^{(i)} \) such that \(\xi_{j,l} \rightarrow \xi_j \) as \(l \rightarrow \infty \), and such that these elements are all in the same residue class mod \(\mathfrak{P} \); but then, if we define \(\phi_i = (\phi_{i1}, \phi_{i2}, \cdots, \phi_{in}) \) by

\[\phi_{i1} = \psi_j \text{ if } i = j', \]
\[\psi_i \text{ if } i = j, \]
\[\xi_i \text{ otherwise,} \]

Remark 2.4 implies that \(\phi_i \in \Xi^{(i+1)} \) for all \(l \), and, as \(l \rightarrow \infty \), \(\phi_{ij} \rightarrow \xi_j = \psi_j \), from which it follows that condition (2) is satisfied by the set \(\Xi^{(i+1)} \).

Condition (3) is fulfilled since \(\xi^{(i)} \in \Xi^{(i)} \) and \(\xi^{(i)}, \xi^{(i+1)} \) are directly axially joined.

Finally, if \(\psi = (\psi_1, \cdots, \psi_n) \in \Xi^{(i+1)} \), we choose \(\xi = (\xi_1, \cdots, \xi_n) \) and the integer \(j \) such that \(\psi_i = \xi_i \) if \(i \neq j \). Let

\[R_{\psi,j}(X) = R(\psi_1, \psi_2, \cdots, \psi_{j-1}, X, \psi_{j+1}, \cdots, \psi_n), \]

and let \(W_{\psi,j} = \{ \eta_j : \text{ord } R_{\psi,j}(\eta_j) = 0 \} \). Proposition 2.3 tells us that \(W_{\psi,j} \) is a quasi-connected domain; but, by the induction hypothesis,
\(f(\xi_1, \cdots, \xi_{j-1}, X, \xi_{j+1}, \cdots, \xi_n) \) is identically equal to
\[
g(\xi_1, \cdots, \xi_{j-1}, X, \xi_{j+1}, \cdots, \xi_n)
\]
on the set \(\Xi_{\xi,j}^{(s)} \); since this subset of \(W_{v,j} \) has a limit point in itself, application of the one-variable uniqueness theorem proved by Krasner gives the result that
\[
f(\xi_1, \cdots, \xi_{j-1}, X, \xi_{j+1}, \cdots, \xi_n) = g(\xi_1, \cdots, \xi_{j-1}, X, \xi_{j+1}, \cdots, \xi_n)
\]
identically on \(W_{v,j} \). This proves our theorem.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND 20742

Current address: Mathematical Sciences Section, National Science Foundation, Washington, D.C. 20550