A remark on a stability theorem of M. Marachkoff
HTML articles powered by AMS MathViewer
- by John R. Haddock
- Proc. Amer. Math. Soc. 31 (1972), 209-212
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288370-1
- PDF | Request permission
Abstract:
By placing certain conditions on $f(t,x)$ for the system of ordinary differential equations (1) \[ x’ = f(t,x),\;f(t,0) \equiv 0,\] Marachkoff weakened the conditions on the Liapunov function of the classical asymptotic stability theorem of Liapunov theory and obtained asymptotic stability of the zero solution of (1). Later, Massera gave a shorter proof of Marachkoff’s result. In this note we show that Marachkoff’s theorem can be proven without the use of one of the conditions.References
- H. A. Antosiewicz, A survey of Lyapunov’s second method, Contributions to the theory of nonlinear oscillations, Vol. IV, Annals of Mathematics Studies, no. 41, Princeton University Press, Princeton, N.J., 1958, pp. 141–166. MR 0102643
- Fred Brauer, Some refinements of Lyapunov’s second method, Canadian J. Math. 17 (1965), 811–819. MR 179422, DOI 10.4153/CJM-1965-079-2
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
- Wolfgang Hahn, Theory and application of Liapunov’s direct method, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. English edition prepared by Siegfried H. Lehnigk; translation by Hans H. Losenthien and Siegfried H. Lehnigk. MR 0147716
- V. Maratschkow, Über einen Liapounoffschen Satz, Bull. Soc. Phys.-Math. Kazan (3) 12 (1940), 171–174 (Russian, with German summary). MR 0013478
- J. L. Massera, On Liapounoff’s conditions of stability, Ann. of Math. (2) 50 (1949), 705–721. MR 35354, DOI 10.2307/1969558
- Taro Yoshizawa, Stability theory by Liapunov’s second method, Publications of the Mathematical Society of Japan, vol. 9, Mathematical Society of Japan, Tokyo, 1966. MR 0208086
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 209-212
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288370-1
- MathSciNet review: 0288370