On total nonnorming subspaces
HTML articles powered by AMS MathViewer
- by William J. Davis and Joram Lindenstrauss
- Proc. Amer. Math. Soc. 31 (1972), 109-111
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288560-8
- PDF | Request permission
Abstract:
A Banach space $X$ has a total nonnorming subspace in its dual if and only if $X$ has infinite codimension in its second dual.References
- Paul Civin and Bertram Yood, Quasi-reflexive spaces, Proc. Amer. Math. Soc. 8 (1957), 906–911. MR 90020, DOI 10.1090/S0002-9939-1957-0090020-6
- J. Dixmier, Sur un théorème de Banach, Duke Math. J. 15 (1948), 1057–1071 (French). MR 27440
- V. I. Gurariĭ and M. I. Kadec, Minimal systems and quasi-complements in Banach space, Dokl. Akad. Nauk SSSR 145 (1962), 256–258 (Russian). MR 0149238
- Ju. I. Petunin, Conjugate Banach spaces containing subspaces of characteristic zero, Dokl. Akad. Nauk SSSR 154 (1964), 527–529 (Russian). MR 0159208
- A. Pełczyński, A note on the paper of I. Singer “Basic sequences and reflexivity of Banach spaces”, Studia Math. 21 (1961/62), 371–374. MR 146636, DOI 10.4064/sm-21-3-370-374
- I. Singer, Basic sequences and reflexivity of Banach spaces, Studia Math. 21 (1961/62), 351–369. MR 146635, DOI 10.4064/sm-21-3-351-369
- Ivan Singer, On bases in quasi-reflexive Banach spaces, Rev. Math. Pures Appl. 8 (1963), 309–311. MR 178341
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 109-111
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288560-8
- MathSciNet review: 0288560