Continuity and linearity of centralizers on a complemented algebra.
HTML articles powered by AMS MathViewer
- by Parfeny P. Saworotnow and George R. Giellis
- Proc. Amer. Math. Soc. 31 (1972), 142-146
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288585-2
- PDF | Request permission
Abstract:
Let $A$ be a semisimple complemented algebra and let $T$ be a mapping of $A$ into itself such that either $T(xy) = xTy$ or $T(xy) = (Tx)y$ holds for all $x,y \in A$. If $T$ is defined everywhere on $A$ then $T$ is a bounded linear operator.References
- Warren Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc. 57 (1945), 364β386. MR 13235, DOI 10.1090/S0002-9947-1945-0013235-8
- N. Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67 (1945), 300β320. MR 12271, DOI 10.2307/2371731
- B. E. Johnson, An introduction to the theory of centralizers, Proc. London Math. Soc. (3) 14 (1964), 299β320. MR 159233, DOI 10.1112/plms/s3-14.2.299
- B. E. Johnson, Continuity of centralisers on Banach algebras, J. London Math. Soc. 41 (1966), 639β640. MR 200741, DOI 10.1112/jlms/s1-41.1.639
- C. N. Kellogg, Centralizers and $H^{\ast }$-algebras, Pacific J. Math. 17 (1966), 121β129. MR 193529
- Parfeny P. Saworotnow, On a generalization of the notion of $H^*$-algebra, Proc. Amer. Math. Soc. 8 (1957), 49β55. MR 85480, DOI 10.1090/S0002-9939-1957-0085480-0
- Parfeny P. Saworotnow, On the imbedding of a right complemented algebra into Ambroseβs $H^*$-algebra, Proc. Amer. Math. Soc. 8 (1957), 56β62. MR 85481, DOI 10.1090/S0002-9939-1957-0085481-2
- M. F. Smiley, Right $H^*$-algebras, Proc. Amer. Math. Soc. 4 (1953), 1β4. MR 52699, DOI 10.1090/S0002-9939-1953-0052699-0
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 142-146
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288585-2
- MathSciNet review: 0288585