Continuous functions of Hermitian operators
HTML articles powered by AMS MathViewer
- by P. R. Halmos
- Proc. Amer. Math. Soc. 31 (1972), 130-132
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288617-1
- PDF | Request permission
Abstract:
Theorem: every normal operator is a continuous function of a Hermitian one. Corollary: every normal operator on a separable Hilbert space is the sum of a diagonal operator and a compact one.References
- I. David Berg, An extension of the Weyl-von Neumann theorem to normal operators, Trans. Amer. Math. Soc. 160 (1971), 365–371. MR 283610, DOI 10.1090/S0002-9947-1971-0283610-0
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
- P. R. Halmos, What does the spectral theorem say?, Amer. Math. Monthly 70 (1963), 241–247. MR 150600, DOI 10.2307/2313117
- P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887–933. MR 270173, DOI 10.1090/S0002-9904-1970-12502-2
- K. Kuratowski, Topology. Vol. II, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1968. New edition, revised and augmented; Translated from the French by A. Kirkor. MR 0259835
- J. T. Schwartz, $W^{\ast }$-algebras, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR 0232221
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 130-132
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288617-1
- MathSciNet review: 0288617