A metric characterization of zero-dimensional spaces
HTML articles powered by AMS MathViewer
- by Ludvík Janoš
- Proc. Amer. Math. Soc. 31 (1972), 268-270
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288739-5
- PDF | Request permission
Abstract:
It is shown that a nonempty separable metrizable space $X$ is zero-dimensional if and only if there exists a metric $\rho$ on $X$, inducing the given topology of $X$ and such that all nonzero distances $\rho (x,y)$ are mutually different.References
- J. de Groot, On a metric that characterizes dimension, Canadian J. Math. 9 (1957), 511–514. MR 90804, DOI 10.4153/CJM-1957-059-6
- Jun-iti Nagata, On a relation between dimension and metrization, Proc. Japan Acad. 32 (1956), 237–240. MR 86284
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 268-270
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288739-5
- MathSciNet review: 0288739