A note on finite dimensional subrings of polynomial rings
HTML articles powered by AMS MathViewer
- by Paul Eakin
- Proc. Amer. Math. Soc. 31 (1972), 75-80
- DOI: https://doi.org/10.1090/S0002-9939-1972-0289498-2
- PDF | Request permission
Abstract:
Let $k$ be a field and ${\{ {X_\alpha }\} _{\alpha \in \Delta }}$ a family of indeterminates over $k$. We show that if $A$ is a ring of Krull dimension $d$ such that $k \subseteq A \subseteq k[{\{ {A_\alpha }\} _{\alpha \in \Delta }}]$ then there are elements ${Y_1}, \cdots ,{Y_d}$ which are algebraically independent over $k$ and a $k$-isomorphism $\phi$ such that $k \subseteq \phi (A) \subseteq k[{Y_1}, \cdots ,{Y_d}]$. This is used to show that a onedimensional ring $A$ which satisfies the above conditions is necessarily an affine ring over $k$ and is necessarily a polynomial ring if it is normal. In addition we show that such a ring $A$ is a normal affine ring of transcendence degree two over $k$ if and only if it is a two-dimensional Krull ring such that each essential valuation of $A$ has residue field transcendental over $k$.References
- A. Evyatar and A. Zaks, Rings of polynomials, Proc. Amer. Math. Soc. 25 (1970), 559–562. MR 258820, DOI 10.1090/S0002-9939-1970-0258820-3
- Paul M. Eakin Jr., The converse to a well known theorem on Noetherian rings, Math. Ann. 177 (1968), 278–282. MR 225767, DOI 10.1007/BF01350720
- William Heinzer, On Krull overrings of a Noetherian domain, Proc. Amer. Math. Soc. 22 (1969), 217–222. MR 254022, DOI 10.1090/S0002-9939-1969-0254022-7
- Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- M. Nagata, Lectures on the fourteenth problem of Hilbert, Tata Institute of Fundamental Research, Bombay, 1965. MR 0215828
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 75-80
- DOI: https://doi.org/10.1090/S0002-9939-1972-0289498-2
- MathSciNet review: 0289498