Invariant means on locally compact semigroups
HTML articles powered by AMS MathViewer
- by James C. S. Wong
- Proc. Amer. Math. Soc. 31 (1972), 39-45
- DOI: https://doi.org/10.1090/S0002-9939-1972-0289708-1
- PDF | Request permission
Abstract:
Let $G$ be a locally compact semigroup (jointly continuous semigroup operation), $M(G)$ the algebra of all bounded regular Borel measures on $G$ (with convolution as multiplication), $E$ a separated locally convex space and $S$ a compact convex subset of $E$. We show that there is a left invariant mean on the space ${\text {LUC}}(G)$ of all bounded left uniformly continuous functions on $G$ iff $G$ has the following fixed point property: For any bilinear mapping $T:M(G) \times E \to E$ (denoted by $(\mu ,s) \to {T_\mu }(s)$) such that (a) ${T_\mu }(S) \subset S$ for any $\mu \geqq 0,||\mu || = 1$, (b) ${T_{\mu \ast \nu }} = {T_\mu } \circ {T_\nu }$ for any $\mu ,\nu \in M(G)$, (c) ${T_\mu }:S \to S$ is continuous for any $\mu \geqq 0,||\mu || = 1$, and ${\text {(d)}}\mu \to {T_\mu }(s)$ is continuous for each $s \in S$ when $M(G)$ has the topology induced by the seminorms ${p_f}(\mu ) = |\int {fd\mu |} ,f \in {\text {LUC}}(G)$, there is some ${s_0} \in S$ such that ${T_\mu }({s_0}) = {s_0}$ for any $\mu \geqq 0,||\mu || = 1$.References
- Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 92128
- Mahlon M. Day, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585–590. MR 138100
- Mahlon Marsh Day, Correction to my paper “Fixed-point theorems for compact convex sets”, Illinois J. Math. 8 (1964), 713. MR 169210
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Robert Ellis, Locally compact transformation groups, Duke Math. J. 24 (1957), 119–125. MR 88674
- Irving Glicksberg, Weak compactness and separate continuity, Pacific J. Math. 11 (1961), 205–214. MR 120523
- K. de Leeuw and I. Glicksberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63–97. MR 131784, DOI 10.1007/BF02559535
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- Theodore Mitchell, Topological semigroups and fixed points, Illinois J. Math. 14 (1970), 630–641. MR 270356
- I. Namioka, On certain actions of semi-groups on $L$-spaces, Studia Math. 29 (1967), 63–77. MR 223863, DOI 10.4064/sm-29-1-63-77
- Neil W. Rickert, Amenable groups and groups with the fixed point property, Trans. Amer. Math. Soc. 127 (1967), 221–232. MR 222208, DOI 10.1090/S0002-9947-1967-0222208-6
- A. P. Robertson and W. J. Robertson, Topological vector spaces, Cambridge Tracts in Mathematics and Mathematical Physics, No. 53, Cambridge University Press, New York, 1964. MR 0162118
- William G. Rosen, On invariant means over compact semigroups, Proc. Amer. Math. Soc. 7 (1956), 1076–1082. MR 82080, DOI 10.1090/S0002-9939-1956-0082080-2
- James C. S. Wong, Topologically stationary locally compact groups and amenability, Trans. Amer. Math. Soc. 144 (1969), 351–363. MR 249536, DOI 10.1090/S0002-9947-1969-0249536-4
- James C. S. Wong, Topological invariant means on locally compact groups and fixed points, Proc. Amer. Math. Soc. 27 (1971), 572–578. MR 272954, DOI 10.1090/S0002-9939-1971-0272954-X
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 39-45
- DOI: https://doi.org/10.1090/S0002-9939-1972-0289708-1
- MathSciNet review: 0289708