INTERPOLATION IN Hp SPACES1

P. L. DUREN AND H. S. SHAPIRO

ABSTRACT. A construction is given to show that for each $p < \infty$ there is a sequence of points in the unit disk which fails to satisfy Carleson's well-known condition, but which admits an H^p interpolation to every bounded sequence.

A sequence $\{z_n\}$ of points in the open unit disk is said to be uniformly separated if

$$\prod_{n=1;\,n\neq k}^{\infty} \left| \frac{z_k - z_n}{1 - \bar{z}_n z_k} \right| \ge \delta$$

for some $\delta > 0$. Carleson [1] showed that

$$\{\{f(z_n)\}: f \in H^\infty\} = l^\infty$$

if and only if $\{z_n\}$ is uniformly separated. Shapiro and Shields [4] then showed that, for $1 \le p < \infty$,

$$\{\{(1-|z_n|)^{1/p}f(z_n)\}: f \in H^p\} = l^p$$

if and only if $\{z_n\}$ is uniformly separated, and Kabaila [3] extended this result to 0 . (See also [2, Chapter 9].)

Recently, A. K. Snyder [5] has proved the existence of a sequence $\{z_n\}$, not uniformly separated, such that

$$\{\{f(z_n)\}: f \in H^2\} \supset l^{\infty}.$$

In this note, we give a direct construction which is valid for any $p < \infty$.

THEOREM 1. For each $p < \infty$, there is a sequence $\{z_n\}$ which is not uniformly separated, yet has the property that, for each $\{w_n\} \in l^{\infty}$, there exists $f \in H^p$ with $f(z_n) = w_n$, $n = 1, 2, \cdots$.

The proof depends on the following simple lemma.

Received by the editors September 21, 1970.

AMS 1970 subject classifications. Primary 30A78, 30A80.

Key words and phrases. Interpolation, H^p spaces, analytic functions, uniformly separated sequences, Blaschke products.

¹ This research was supported in part by the National Science Foundation under Contracts GP-11158 and GP-11340.

LEMMA. For each infinite Blaschke product B(z) there is a sequence $\{\zeta_n\}$ such that $|\zeta_n| < 1$, $|\zeta_n| \to 1$, $B(\zeta_n) \neq 0$, $B(\zeta_n) \to 0$, and

$$(1 - |\zeta_n|)^{\alpha}/B(\zeta_n) \rightarrow 0$$

for every $\alpha > 0$.

PROOF OF LEMMA. Let $\{a_n\}$ be the zeros of B(z), arranged so that $|a_1| \le |a_2| \le \cdots$. Let $e^{i\theta}$ be a boundary point such that $|B(re^{i\theta})| \to 1$ as $r \to 1$. Join a_1 to $e^{i\theta}$ by a path Γ_1 composed of an arc of the circle $|z| = |a_1|$ and the radial segment from $|a_1|$ $e^{i\theta}$ to $e^{i\theta}$. Then the function

$$F(z) = B(z) \log (1 - |z|)$$

is continuous in the open disk, vanishes at a_1 , and tends to $-\infty$ as $z \to e^{i\theta}$ along Γ_1 . Thus there is a point ζ_1 on Γ_1 where $F(\zeta_1) = -1$. Now choose a_n with $|a_n| > |\zeta_1|$, and join a_n to $e^{i\theta}$ by a path Γ_2 of the same type. Thus there exists ζ_2 on Γ_2 where $F(\zeta_2) = -1$. Continuing in this manner, we construct a sequence $\{\zeta_n\}$ with $|\zeta_n| \to 1$ and $F(\zeta_n) = -1$. This proves the lemma.

PROOF OF THEOREM. We may assume $p \ge 1$. Let $\{a_n\}$ be an arbitrary uniformly separated sequence with $|a_1| \le |a_2| \le \cdots$, and let B(z) be its associated Blaschke product. The lemma shows, after passing to a subsequence, that there is a sequence $\{\zeta_n\}$ with $\{|\zeta_n|\}$ increasing to 1, $B(\zeta_n) \to 0$, and

(1)
$$\sum_{n=1}^{\infty} (1 - |\zeta_n|) |B(\zeta_n)|^{-p} < \infty.$$

We may take $\{\zeta_n\}$ to be an exponential sequence, hence uniformly separated (see [2]). Let the sequences $\{a_n\}$ and $\{\zeta_n\}$ be combined to form a sequence $\{z_n\}$ with $|z_1| \leq |z_2| \leq \cdots$, so that $\{a_k\} = \{z_{n_k}\}$ and $\{\zeta_k\} = \{z_{m_k}\}$, say. Given $\{w_n\} \in l^{\infty}$, let $\{c_k\} = \{w_{n_k}\}$ and $\{\omega_k\} = \{w_{m_k}\}$. By Carleson's theorem, there exists $g \in H^{\infty}$ with $g(a_k) = c_k$, $k = 1, 2, \cdots$. If we can find $h \in H^p$ such that

(2)
$$g(\zeta_k) + B(\zeta_k)h(\zeta_k) = \omega_k, \qquad k = 1, 2, \cdots,$$

then the function f = g + Bh will be the desired interpolating function. But (2) is equivalent to

(3)
$$(1 - |\zeta_k|)^{1/p} h(\zeta_k) = (1 - |\zeta_k|)^{1/p} [B(\zeta_k)]^{-1} [\omega_k - g(\zeta_k)].$$

By (1), the right-hand side of (3) forms an l^p sequence, so by the theorem of Shapiro and Shields, there exists $h \in H^p$ for which (3), and therefore (2), holds. The sequence $\{z_n\}$ is not uniformly separated, since $B(\zeta_n) \to 0$.

The proof shows that one can adjoin suitable points to an *arbitrary* uniformly separated sequence to produce a sequence $\{z_n\}$ of the type described in the theorem. By a similar construction, one can prove the following theorem.

THEOREM 2. For each pair (p,q), $0 < q < p < \infty$, there is a sequence $\{z_n\}$, not uniformly separated, such that for each $\{w_n\} \in l^p$ there exists $f \in H^q$ with

$$(1-|z_n|)^{1/p}f(z_n)=w_n, n=1,2,\cdots.$$

REFERENCES

- 1. L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921-930. MR 22 #8129.
 - 2. P. L. Duren, Theory of H^p spaces, Academic Press, New York, 1970.
- 3. V. Kabaĭla, Interpolation sequences for the H_p classes in the case p < 1, Litovsk. Mat. Sb. 3 (1963), no. 1, 141–147. MR 32 #217.
- 4. H. S. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math. 83 (1961), 513-532. MR 24 #A3280.
- 5. A. K. Snyder, Sequence spaces and interpolation problems for analytic functions, Studia Math. 39 (1971), 137-153.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN, ANN ARBOR, MICHIGAN 48104