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INTERPOLATION IN H* SPACES1

p. l. düren and h. s. shapiro

Abstract. A construction is given to show that for each p < co

there is a sequence of points in the unit disk which fails to satisfy

Carleson's well-known condition, but which admits an H" inter-

polation to every bounded sequence.

A sequence {zn} of points in the open unit disk is said to be uniformly

separated if

n — z„

1 — ZnZk i

for some d > 0. Carleson [1] showed that

{{/(zB)}:/eJP»} = Z«

if and only if {zn} is uniformly separated. Shapiro and Shields [4] then

showed that, for 1 _ p < co,

{{(1 -\zAr*jXZn)YjeH*} = l>

if and only if {zn} is uniformly separated, and Kabaila [3] extended this

result to 0 < p < L (See also [2, Chapter 9].)

Recently, A. K. Snyder [5] has proved the existence of a sequence

{zn}, not uniformly separated, such that

{{f(zn)}:feH*}=> r.

In this note, we give a direct construction which is valid for any p < co.

Theorem 1. For each p < co, there is a sequence {zn} which is not

uniformly separated, yet has the property that, for each {wn} e /°°, there

exists f 'e Hv with f (zn) = w„, n = 1, 2, • • •.

The proof depends on the following simple lemma.
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Lemma. For each infinite Blaschke product B(z) there is a sequence

{U such that \u < 1, \Q - 1, B(u * 0, B(u^0, and

(l - \uyib(u^o
for every a > 0.

Proof of Lemma.   Let {an} be the zeros of B(z), arranged so that

= \ai\ = " -' • Let eie be a boundary point such that \B(reie)\ -*■ 1 as

r -> 1. Join ax to ete by a path Tj composed of an arc of the circle |z| = \at\

and the radial segment from |aj| e%e to e'B. Then the function

F(z) = B(z) log (1 - \z\)

is continuous in the open disk, vanishes at a,, and tends to -co as

z -*■ e'e along r*x. Thus there is a point £, on Tj where .F(£i) = — 1. Now

choose an with \an\ > and join a„ to e'9 by a path r2 of the same type.

Thus there exists £2 on T2 where F(t,2) = — 1. Continuing in this manner,

we construct a sequence {£„} with —>■ 1 and F(£„) = — 1. This proves

the lemma.

Proof of Theorem. We may assume p _ 1. Let {an} be an arbitrary

uniformly separated sequence with \at\ _ \a2\ _ • • • , and let B(z) be its

associated Blaschke product. The lemma shows, after passing to a sub-

sequence, that there is a sequence {£„} with {|£J} increasing to 1, -+

0, and
00

(1) 2(i -iu)ifl(ur< 00.

We may take {£„} to be an exponential sequence, hence uniformly sepa-

rated (see [2]). Let the sequences {an} and {£„} be combined to form a

sequence {z„} with |zx| = |z2| = • • • , so that {oj = {z„J and = {zOT;fc},

say. Given {wj e /°°, let {ck} = {»t>.nJ and {cok} = {w„,J. By Carleson's

theorem, there exists g e Hx with g(ßj.) = c*, k = 1, 2, • • •. If we can

find h e H" such that

(2) g(Q + B(Qh(Q = co„     k = 1,2, • • •,

then the function f = g + Bh will be the desired interpolating function.

But (2) is equivalent to

(3) (1 - \Ur»h(Q = (1 - \tk\r/*[B(Q]-i[tok - gitei

By (1), the right-hand side of (3) forms an P sequence, so by the theorem

of Shapiro and Shields, there exists h e Hv for which (3), and therefore

(2), holds. The sequence {z„} is not uniformly separated, since £(£«) —► 0.
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The proof shows that one can adjoin suitable points to an arbitrary

uniformly separated sequence to produce a sequence {zn} of the type

described in the theorem. By a similar construction, one can prove the

following theorem.

Theorem 2. For each pair (p, q), 0 < q < p < co, there is a sequence

{z„}, not uniformly separated, such that for each {wn} e lv there exists

feH" with

(1- \zn\f"f(Zn) = w„, «=1,2,---.
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