Approximation of vector-valued continuous functions
HTML articles powered by AMS MathViewer
- by Alan H. Shuchat
- Proc. Amer. Math. Soc. 31 (1972), 97-103
- DOI: https://doi.org/10.1090/S0002-9939-1972-0290082-5
- PDF | Request permission
Abstract:
The results of this article are important for proving Riesz-type representation theorems for spaces of continuous functions with values in a topological vector space. It is well known that every continuous function with compact support from a locally compact Hausdorff space to a locally convex space can be uniformly approximated by continuous functions with finite-dimensional range. We give several conditions sufficient for this to be true without convexity. This problem is related to a vector-valued Tietze extension problem, and we give a new proof of a theorem of Dugundji, Arens, and Michael in this area, using topological tensor products.References
- Richard Arens, Extension of functions on fully normal spaces, Pacific J. Math. 2 (1952), 11–22. MR 49543
- Maynard G. Arsove, The Paley-Wiener theorem in metric linear spaces, Pacific J. Math. 10 (1960), 365–379. MR 125429 K. Borsuk, Isomorphie der Funktionalräume, Bull. Acad. Polon. Sci. Ser. A (1933), 1-10.
- N. Bourbaki, Éléments de mathématique. Fasc. XIII. Livre VI: Intégration. Chapitres 1, 2, 3 et 4: Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d’une mesure, Espaces $L^{p}$, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1175, Hermann, Paris, 1965 (French). Deuxième édition revue et augmentée. MR 0219684
- J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367. MR 44116
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- Victor Klee, Shrinkable neighborhoods in Hausdorff linear spaces, Math. Ann. 141 (1960), 281–285. MR 131149, DOI 10.1007/BF01360762
- Victor Klee, Leray-Schauder theory without local convexity, Math. Ann. 141 (1960), 286–296. MR 131150, DOI 10.1007/BF01360763
- Ernest Michael, Some extension theorems for continuous functions, Pacific J. Math. 3 (1953), 789–806. MR 59541 J. Nagata, Modern dimension theory, Bibliotheca Math., vol. 6, Interscience, New York, 1965. MR #8380.
- Alan H. Shuchat, Integral representation theorems in topological vector spaces, Trans. Amer. Math. Soc. 172 (1972), 373–397. MR 312264, DOI 10.1090/S0002-9947-1972-0312264-0
- Khyson Swong, A representation theory of continuous linear maps, Math. Ann. 155 (1964), 270–291; errata: 157 (1964), 178. MR 0165358, DOI 10.1007/BF01354862
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131 P. Turpin and L. Waelbroeck, Sur l’approximation des fonctions différentiables à valeurs dans les espaces vectoriels topologiques, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A94-A97. MR 38 #2597.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 97-103
- DOI: https://doi.org/10.1090/S0002-9939-1972-0290082-5
- MathSciNet review: 0290082