LOCALIZATION IN A PRINCIPAL RIGHT IDEAL DOMAIN

RAYMOND A. BEAUREGARD

ABSTRACT. Let R be a principal right ideal domain with right D-chain $\{R^{(\alpha)} \mid 0 \le \alpha \le \delta\}$, and let $K_{\alpha} = R(R^{(\alpha)})^{-1}$ be the associated chain of quotient rings of R. The local skew degree of R is defined to be the least ordinal λ such that K_{λ} is a local ring. The main result states that for each $\alpha \ge \lambda$, K_{α} is a local ring; equivalently, R has a unique $(\alpha + 1)$ -prime for $\delta > \alpha \ge \lambda$.

In this note we consider conditions under which certain right quotient rings of a principal right ideal domain (PRI domain) are local rings. A PRI domain is a (not necessarily commutative) integral domain with unity in which each right ideal is a principal right ideal. By a local ring we understand a ring with unity in which the set of nonunits is closed under addition. Thus a local ring may be characterized as a ring with unity containing a unique maximal (right or left) ideal, namely the set of nonunits of the ring. A local PRI domain is then a PRI domain that has a unique prime (a nonzero nonunit that has no proper factorizations).

Before stating our main result we review some of the preliminaries that may be found in [1] and the references given there. A subset $S \neq \emptyset$ of nonzero elements of an integral domain R is a right quotient monoid in R if

- (1) $ab \in S$ iff $a, b \in S$ $(a, b \in R)$,
- (2) $a \in S$, $b \in R$ implies $aR \cap bS \neq \emptyset$.

Then the set $K = RS^{-1} = \{rs^{-1} \mid r \in R, s \in S\}$ can be made into a ring in the usual way. Addition and multiplication in K are carried out by using the fact that $a^{-1}b = b_1a_1^{-1}$ for each $a \in S$, $b \in R$ by (2). The ring K is the right quotient ring of R with respect to S; it is an integral domain with unity with the property that the units of K that belong to R are precisely the members of S. It is easily established that K is a local ring iff $R \setminus S$ is an ideal of R. For each right ideal A of R, AS^{-1} is a right ideal of K; on the other hand, if R is a right ideal of R then R is a right ideal of R.

Received by the editors January 4, 1971.

AMS 1969 subject classifications. Primary 1615.

Key words and phrases. PRI domain, D-chain, primes, infinite primes, localization.

¹ In general, the right quotient ring of R with respect to S is defined with (1) replaced by the weaker condition that S be multiplicatively closed.

and $B \cap R$ is a right ideal of R. From this it follows that if R is a PRI domain then so is K.

For the remainder of this paper R is a PRI domain. Examples of right quotient monoids in R include the group U_R of units of R, and the monoid R^* of nonzero elements of R. Since prime factorizations in R are unique (up to order of factors and similarity) the dimension dim (a) of $a \in R^*$ can be defined to be $n \ge 0$ if a is the product of n primes, and ∞ otherwise. It is shown in [1] that $R' = \{a \in R^* \mid \dim(a) < \infty\}$ is a right quotient monoid in R.

Any PRI domain R has a right D-chain. This means that there exists an ordinal δ and a chain $\{R^{(\alpha)} \mid 0 \le \alpha \le \delta\}$ of right quotient monoids in R satisfying the following conditions in which K_{α} denotes the right quotient ring $R(R^{(\alpha)})^{-1}$:

- (1) $R^{(0)} = U_R, R^{(\delta)} = R^*,$
- (2) $R^{(\alpha)} = \bigcup_{\beta < \alpha} R^{(\beta)}$ if α is a limit ordinal,
- (3) $R^{(\alpha)} = (K_{\alpha-1})' \cap R$ if α is not a limit ordinal, $\alpha > 0$.

It follows that $R^{(\beta)} \subset R^{(\alpha)}$ and $K_{\beta} \subset K_{\alpha}$ if $\beta \leq \alpha$. Also $K_0 = R$ and $K_{\delta} = R(R^*)^{-1}$ is the right quotient field of R. If I is an interval of ordinals, I^* will denote the set of nonlimit ordinals of I. For each $\alpha \in (0, \delta]^*$ an element $z \in R$ is called an α -prime if zR is maximal in $\{zR \mid z \in R \setminus R^{(\alpha-1)}\}$. Evidently, α -primes exist because of the acc for right ideals of R; 1-primes are the usual primes and if $\alpha > 1$, α -primes have infinite dimension in R and are primes in $K_{\alpha-1}$. The details regarding the construction of the D-chain may be found in [1].

We now define the (right) local skew degree of R to be the least ordinal λ such that K_{λ} is a local ring. This definition is valid since K_{δ} is itself a local ring.

Our main result is the following Theorem whose proof will follow from the two lemmas below.

THEOREM. Let R be a PRI domain with right D-chain $\{R^{(\alpha)} \mid 0 \le \alpha \le \delta\}$, let $K_{\alpha} = R(R^{(\alpha)})^{-1}$, and let λ be the local skew degree of R. Then K_{α} is a local ring for each $\alpha \ge \lambda$. Equivalently, R has a unique $(\alpha + 1)$ -prime for $\delta > \alpha \ge \lambda$.

In what follows the term "unique" means unique up to right unit factor.

LEMMA 1. Suppose R has a unique β -prime for some $\beta \in [1, \delta]^*$. Then R has a unique α -prime for each $\alpha \in [\beta, \delta]^*$.

PROOF. Proceeding by transfinite induction let $\alpha \in (\beta, \delta]^*$ and assume R has a unique σ -prime whenever $\sigma \in [\beta, \alpha)^*$. To show R has a unique α -prime let y and z be two α -primes in R with $yR \neq zR$; we seek a contradiction. Let dR = yR + zR. We claim that if $\sigma \in [\beta, \alpha)^*$ then $d \in R \setminus R^{(\sigma)}$

For suppose $\sigma \in [\beta, \alpha)^*$ and let x be the unique σ -prime in R. Now $yR \subseteq xR$ by the maximum condition on the right ideals of R. In fact, $yR \subseteq \bigcap_{n=0}^{\infty} x^n R$; otherwise we would have $y = x^k s$ where k is the largest such integer and $s \in R \setminus xR$; it would then follow that $s \in R^{(\sigma-1)}$, otherwise $sR \subseteq xR$ by the maximum condition and therefore $y \in R^{(\sigma)}$ which contradicts the fact that y is an α -prime. Similarly we have $zR \subseteq \bigcap_{n=0}^{\infty} x^n R$ and therefore $dR \subseteq \bigcap_{n=0}^{\infty} x^n R$. Since x is prime in $K_{\sigma-1}$, the dimension of d in $K_{\sigma-1}$ is infinite; that is, $d \notin (K_{\sigma-1})'$ and so $d \in R \setminus R^{(\sigma)}$. This establishes the claim. Now $yR \subseteq dR$ implies $d \in R^{(\alpha-1)}$ because y is an α -prime. If $\alpha - 1$ is not a limit ordinal then we have contradicted the claim. If $\alpha - 1$ is a limit ordinal then $\beta < \alpha - 1$ because β is not a limit ordinal. Hence $R^{(\alpha-1)} = \bigcup_{\sigma < \alpha-1} R^{(\sigma)}$ and we may restrict the union to $\sigma \in [\beta, \alpha - 1)^*$. Thus we may choose $\sigma \in [\beta, \alpha - 1)^*$ such that $d \in R^{(\sigma)}$ which again contradicts the claim. We conclude yR = zR which contradicts our original supposition.

LEMMA 2. For each $\alpha < \delta$, K_{α} is a local ring iff R has a unique $(\alpha + 1)$ -prime.

PROOF. If K_{α} is a local ring then $R \setminus R^{(\alpha)}$ is an ideal, say $R \setminus R^{(\alpha)} = xR$. Then x is clearly the unique $(\alpha + 1)$ -prime of R. Conversely, assume that R has a unique $(\alpha + 1)$ -prime x, let z be any prime in K_{α} and choose $z_1 \in R$ such that $z_1R = zK_{\alpha} \cap R$. Then $z_1K_{\alpha} = zK_{\alpha}$ and $z_1R \subset xR$ by the maximum condition for right ideals of R. Therefore $zK_{\alpha} \subset xK_{\alpha}$ which means $zK_{\alpha} = xK_{\alpha}$ since z and x are primes in K_{α} . This shows that K_{α} is a PRI domain with a unique prime. Consequently K_{α} is a local ring.

PROOF OF THE THEOREM. If the local skew degree λ of R is equal to δ then there is nothing to prove. Assume $\lambda < \delta$. Since K_{λ} is a local ring, R has a unique $(\lambda + 1)$ -prime. If $\alpha > \lambda$, then R has a unique $(\alpha + 1)$ -prime by Lemma 1 so that K_{α} is a local ring by Lemma 2.

In conclusion we refer the reader to [1] for examples of PRI domains with right D-chain of any preassigned length δ .

REFERENCES

1. R. A. Beauregard, Infinite primes and unique factorization in a principal right ideal domain, Trans. Amer. Math. Soc. 141 (1969), 245-253. MR 39 #4206.

Department of Mathematics, University of Rhode Island, Kingston, Rhode Island 02881