A note on Lie-admissible nilalgebras
HTML articles powered by AMS MathViewer
- by Hyo Chul Myung
- Proc. Amer. Math. Soc. 31 (1972), 95-96
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291230-3
- PDF | Request permission
Abstract:
It is shown that a finite dimensional, flexible, powerassociative, Lie-admissible algebra $\mathfrak {A}$ over a field of characteristic 0 is a nilalgebra if and only if there exists a Cartan subalgebra of ${\mathfrak {A}^ - }$- which is nil in $\mathfrak {A}$.References
- C. Chevalley, Théorie des groupes de Lie, Hermann, Paris, 1968.
- P. J. Laufer and M. L. Tomber, Some Lie admissible algebras, Canadian J. Math. 14 (1962), 287–292. MR 136636, DOI 10.4153/CJM-1962-020-9
- Hyo Chul Myung, A remark on the proof of a theorem of Laufer and Tomber, Canadian J. Math. 23 (1971), 270. MR 269707, DOI 10.4153/CJM-1971-026-1
- Robert H. Oehmke, On flexible algebras, Ann. of Math. (2) 68 (1958), 221–230. MR 106934, DOI 10.2307/1970244
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 95-96
- DOI: https://doi.org/10.1090/S0002-9939-1972-0291230-3
- MathSciNet review: 0291230