A NOTE ON LIE-ADMISSIBLE NILALGEBRAS

HYO CHUL MYUNG

Abstract. It is shown that a finite dimensional, flexible, power-associative, Lie-admissible algebra \(\mathfrak{A} \) over a field of characteristic 0 is a nilalgebra if and only if there exists a Cartan subalgebra of \(\mathfrak{A} \) which is nil in \(\mathfrak{A} \).

Let \(\mathfrak{A} \) be a flexible algebra, that is, a nonassociative algebra satisfying the flexible law \((xy)x = x(yx)\). The algebra \(\mathfrak{A}^{-} \) is defined as the same vector space as \(\mathfrak{A} \) but with a multiplication given by \([x, y] = xy - yx\). Then \(\mathfrak{A} \) is said to be Lie-admissible if \(\mathfrak{A}^{-} \) is a Lie algebra. If \(\mathfrak{A} \) is finite dimensional, we consider a Cartan subalgebra \(\mathfrak{H} \) of \(\mathfrak{A}^{-} \). Since \(D_{h} \equiv R_{h} - L_{h} \) is a derivation of \(\mathfrak{A} \) for every \(h \) in \(\mathfrak{H} \) and \(\mathfrak{H} \) is the Fitting null component of \(\mathfrak{A}^{-} \) for \(D(\mathfrak{H}) \), it follows that \(\mathfrak{H} \) is a subalgebra of \(\mathfrak{A} \).

If \(\mathfrak{A}^{-} \) is a simple Lie algebra, it is shown that \(\mathfrak{A} \) is a nilalgebra ([3] and [4]). In case \(\mathfrak{A}^{-} \) is simple, the structure of \(\mathfrak{A} \) has been studied in [2] by using a Cartan subalgebra of \(\mathfrak{A}^{-} \) which is nil in \(\mathfrak{A} \). In this note we give a condition that \(\mathfrak{A} \) be a nilalgebra in terms of a Cartan subalgebra of \(\mathfrak{A}^{-} \).

Theorem. Suppose that \(\mathfrak{A} \) is a finite dimensional, flexible, power-associative, Lie-admissible algebra over a field of characteristic 0. Then \(\mathfrak{A} \) is a nilalgebra if and only if there exists a Cartan subalgebra of \(\mathfrak{A}^{-} \) which is nil in \(\mathfrak{A} \).

Proof. The “only if” part is obvious. Let \(\mathfrak{H} \) be a Cartan subalgebra of \(\mathfrak{A}^{-} \) which is nil in \(\mathfrak{A} \). Let \(\mathfrak{R} \) be the nil radical of \(\mathfrak{A} \) (the maximal nil ideal of \(\mathfrak{A} \)). Suppose that \(\mathfrak{A} \) is not a nilalgebra. Then the quotient algebra \(\mathfrak{A} = \mathfrak{A}/\mathfrak{R} \) satisfies the assumptions in the theorem and is semisimple. Since any flexible power-associative algebra of characteristic 0 is strictly power-associative, it follows from [4] that \(\mathfrak{A} \) has an identity \(\mathbb{I} \). Since the characteristic is 0, it also follows from [1, p. 379] that the homomorphic image \(\mathfrak{H} \) of \(\mathfrak{H} \) is a Cartan subalgebra of the Lie algebra \(\mathfrak{A}^{-} \). But then \(\mathbb{I} \) is in \(\mathfrak{H} \), and since \(\mathfrak{H} \) is nil in \(\mathfrak{A} \), this is a contradiction. Therefore \(\mathfrak{A} \) is a nilalgebra.
The center of \mathfrak{U}^- is a subalgebra of \mathfrak{U} and is contained in any Cartan subalgebra of \mathfrak{U}^-. The condition in the theorem cannot be relaxed to the case that the center of \mathfrak{U}^- is nil in \mathfrak{U}.

Example. Let \mathfrak{U} be an algebra with a basis x, y, h, z over a field Φ of characteristic $\neq 2$ such that the multiplication is given by $xh = x$, $yh = \frac{1}{2}(x + 1)y$, $hy = \frac{1}{2}(1 - x)y$, $h^2 = h$ with $x \neq 0, 1$ in Φ and all other products are 0. It is shown that \mathfrak{U} is flexible, power-associative and Lie-admissible, but not associative. Then $\mathfrak{U}z$ is the center of \mathfrak{U}^- and $z^2 = 0$, while $\mathfrak{U}h + \mathfrak{U}z$ is a Cartan subalgebra of \mathfrak{U}^- and is not nil in \mathfrak{U}.

References

Department of Mathematics, University of Northern Iowa, Cedar Falls, Iowa 50613