Factorization and disconjugacy of third order differential equations
HTML articles powered by AMS MathViewer
- by Anton Zettl
- Proc. Amer. Math. Soc. 31 (1972), 203-208
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296421-3
- PDF | Request permission
Abstract:
Sufficient conditions for the factorization of $y''β + py'' + qyβ + ry$ into a product of first order operators as well as into a product of a first order and a second order operator are given. Factorization into a product of first order factors is known to be equivalent to disconjugacy. These conditions are simple inequalities involving the coefficients.References
- N. V. Azbelev and Z. B. Calyuk, On the question of the distribution of the zeros of solutions of a third-order linear differential equation, Mat. Sb. (N.S.) 51 (93) (1960), 475β486 (Russian). MR 0121529
- John H. Barrett, Third-order differential equations with nonnegative coefficients, J. Math. Anal. Appl. 24 (1968), 212β224. MR 232039, DOI 10.1016/0022-247X(68)90060-7
- John H. Barrett, Oscillation theory of ordinary linear differential equations, Advances in Math. 3 (1969), 415β509. MR 257462, DOI 10.1016/0001-8708(69)90008-5 J. M. Dolan, Oscillatory behavior of solutions of linear ordinary differential equations of third order, Doctoral Dissertation, University of Tennessee, Knoxville, Tenn., 1967 (unpublished).
- A. M. Fink, An extension of Polyaβs theorem, J. Math. Anal. Appl. 23 (1968), 625β627. MR 229904, DOI 10.1016/0022-247X(68)90142-X
- Maurice Hanan, Oscillation criteria for third-order linear differential equations, Pacific J. Math. 11 (1961), 919β944. MR 145160
- Philip Hartman, Principal solutions of disconjugate $n-\textrm {th}$ order linear differential equations, Amer. J. Math. 91 (1969), 306β362. MR 247181, DOI 10.2307/2373512
- Philip Hartman, On disconjugacy criteria, Proc. Amer. Math. Soc. 24 (1970), 374β381. MR 251304, DOI 10.1090/S0002-9939-1970-0251304-8
- Lloyd K. Jackson, Disconjugacy conditions for linear third-order differential equations, J. Differential Equations 4 (1968), 369β372. MR 226112, DOI 10.1016/0022-0396(68)90023-5
- W. J. Kim, Oscillatory properties of linear third-order differential equations, Proc. Amer. Math. Soc. 26 (1970), 286β293. MR 264162, DOI 10.1090/S0002-9939-1970-0264162-2
- A. C. Lazer, The behavior of solutions of the differential equation $y''β+p(x)y^{\prime } +q(x)y=0$, Pacific J. Math. 17 (1966), 435β466. MR 193332
- A. Ju. Levin, The non-oscillation of solutions of the equation $x^{(n)}+p_{1}(t)x^{(n-1)}+\cdots +p_{n} (t)x=0$, Uspehi Mat. Nauk 24 (1969), no.Β 2 (146), 43β96 (Russian). MR 0254328
- Kenneth S. Miller, Linear differential equations in the real domain, W. W. Norton & Co. Inc., New York, 1963. MR 0156014
- Zeev Nehari, Disconjugacy criteria for linear differential equations, J. Differential Equations 4 (1968), 604β611. MR 233006, DOI 10.1016/0022-0396(68)90010-7
- G. PΓ³lya, On the mean-value theorem corresponding to a given linear homogeneous differential equation, Trans. Amer. Math. Soc. 24 (1922), no.Β 4, 312β324. MR 1501228, DOI 10.1090/S0002-9947-1922-1501228-5 E. Willett, Asymptotic behavior of disconjugate $N$th order differential equations, Canad. J. Math. 23 (1971).
- D. Willett, Generalized de la VallΓ©e Poussin disconjugacy tests for linear differential equations, Canad. Math. Bull. 14 (1971), 419β428. MR 348189, DOI 10.4153/CMB-1971-073-3 β, Disconjugacy tests for singular linear differential equations (preprint).
- Anton Zettl, Factorization of differential operators, Proc. Amer. Math. Soc. 27 (1971), 425β426. MR 273085, DOI 10.1090/S0002-9939-1971-0273085-5
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 203-208
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296421-3
- MathSciNet review: 0296421