Manifolds with few cells and the stable homotopy of spheres
HTML articles powered by AMS MathViewer
- by Larry Smith
- Proc. Amer. Math. Soc. 31 (1972), 279-284
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296957-5
- PDF | Request permission
Abstract:
Let $f:{S^{n + k - 1}} \to {S^n}$ and form the complex $V(f) = {S^n} \vee {S^k}{ \cup _{f + [{i_n},{i_k}]}}{e^{n + k}}$ where ${i_t} \in {\pi _t}({S^t})$ is the canonical generator and [ , ] denotes Whitehead product. The complex $V(f)$ is a Poincaré duality complex. Under the assumption that $f$ is in the stable range we show that $V(f)$ has the homotopy type of a smooth, combinatorial or topological manifold iff the map $f$ lies in the image of the $O$, PL or Top $J$-homomorphism respectively.References
- J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20–104. MR 141119, DOI 10.2307/1970147
- J. F. Adams, On the groups $J(X)$. IV, Topology 5 (1966), 21–71. MR 198470, DOI 10.1016/0040-9383(66)90004-8
- P. J. Hilton, On the homotopy groups of the union of spheres, J. London Math. Soc. 30 (1955), 154–172. MR 68218, DOI 10.1112/jlms/s1-30.2.154
- I. M. James, Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374–383. MR 91467, DOI 10.1090/S0002-9939-1957-0091467-4
- I. M. James and J. H. C. Whitehead, The homotopy theory of sphere bundles over spheres. I, Proc. London Math. Soc. (3) 4 (1954), 196–218. MR 61838, DOI 10.1112/plms/s3-4.1.196
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1
- Larry Smith, The Todd character and the integrality theorem for the Chern character, Illinois J. Math. 17 (1973), 301–310. MR 328931
- Michael Spivak, Spaces satisfying Poincaré duality, Topology 6 (1967), 77–101. MR 214071, DOI 10.1016/0040-9383(67)90016-X
- N. E. Steenrod, Cohomology invariants of mappings, Ann. of Math. (2) 50 (1949), 954–988. MR 31231, DOI 10.2307/1969589
- C. T. C. Wall, Surgery on compact manifolds, London Mathematical Society Monographs, No. 1, Academic Press, London-New York, 1970. MR 0431216
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 279-284
- MSC: Primary 55E45; Secondary 57C10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296957-5
- MathSciNet review: 0296957