A note on fixed point free involutions and equivariant maps
HTML articles powered by AMS MathViewer
- by Jack Ucci
- Proc. Amer. Math. Soc. 31 (1972), 297-298
- DOI: https://doi.org/10.1090/S0002-9939-1972-0298656-2
- PDF | Request permission
Abstract:
The space $P({S^n})$ of all paths $\omega$ in ${S^n}$ with given initial point $x$ and endpoint $- x$ admits an involution $(T\omega )(t) = - \omega (1 - t)$. With the standard antipodal involution on ${S^{n - 1}}$ an equivariant map $P({S^n}) \to {S^{n - 1}}$ is constructed for $n = 2,4,$, or $8$.References
- K. Borsuk, Drei Sätze über die $n$-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177-190.
- P. E. Conner and E. E. Floyd, Fixed point free involutions and equivariant maps. II, Trans. Amer. Math. Soc. 105 (1962), 222–228. MR 143208, DOI 10.1090/S0002-9947-1962-0143208-6
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 297-298
- MSC: Primary 55C10; Secondary 58E05
- DOI: https://doi.org/10.1090/S0002-9939-1972-0298656-2
- MathSciNet review: 0298656