Nakayama’s lemma for half-exact functors
HTML articles powered by AMS MathViewer
- by Arthur Ogus and George Bergman
- Proc. Amer. Math. Soc. 31 (1972), 67-74
- DOI: https://doi.org/10.1090/S0002-9939-1972-0302633-2
- PDF | Request permission
Abstract:
We prove an analog of Nakayama’s Lemma, in which the finitely generated module is replaced by a half-exact functor from modules to modules. As applications, we obtain simple proofs of Grothendieck’s “property of exchange” for a sheaf of modules under base change, and of the “local criterion for flatness."References
- Maurice Auslander, On the dimension of modules and algebras. III. Global dimension, Nagoya Math. J. 9 (1955), 67–77. MR 74406
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491 N. Bourbaki, Algèbre commutative. Chap. 2, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146. —, Algèbre commutative. Chap. 3, Actualités Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027.
- P. M. Cohn, Universal algebra, Harper & Row, Publishers, New York-London, 1965. MR 0175948 A. Grothendieck, Eléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. No. 11 (1961); ibid. No. 17 (1963). MR 29 #1210; MR 36 #177c.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 67-74
- MSC: Primary 13D99
- DOI: https://doi.org/10.1090/S0002-9939-1972-0302633-2
- MathSciNet review: 0302633