Spaces on which each absolutely summing map is nuclear
HTML articles powered by AMS MathViewer
- by D. R. Lewis
- Proc. Amer. Math. Soc. 31 (1972), 195-198
- DOI: https://doi.org/10.1090/S0002-9939-1972-0312213-0
- PDF | Request permission
Abstract:
Let $E$ be a Banach space. The dual of $E$ is isometric to ${l^1}(\Gamma )$ for some set $\Gamma$ if and only if each absolutely summing operator on $E$ is nuclear, with equality of the nuclear and absolutely summing norms.References
- C. Bessaga and A. Pełczyński, Spaces of continuous functions. IV. On isomorphical classification of spaces of continuous functions, Studia Math. 19 (1960), 53–62. MR 113132, DOI 10.4064/sm-19-1-53-62
- Alexandre Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955), Chapter 1: 196 pp.; Chapter 2: 140 (French). MR 75539
- A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São Paulo 8 (1953), 1–79 (French). MR 94682
- A. Grothendieck, Une caractérisation vectorielle-métrique des espaces $L^1$, Canadian J. Math. 7 (1955), 552–561 (French). MR 76301, DOI 10.4153/CJM-1955-060-6
- J. Lindenstrauss and A. Pełczyński, Absolutely summing operators in $L_{p}$-spaces and their applications, Studia Math. 29 (1968), 275–326. MR 231188, DOI 10.4064/sm-29-3-275-326
- J. Lindenstrauss and H. P. Rosenthal, The ${\cal L}_{p}$ spaces, Israel J. Math. 7 (1969), 325–349. MR 270119, DOI 10.1007/BF02788865
- A. Pełczyński and Z. Semadeni, Spaces of continuous functions. III. Spaces $C(\Omega )$ for $\Omega$ without perfect subsets, Studia Math. 18 (1959), 211–222. MR 107806, DOI 10.4064/sm-18-2-211-222
- A. Pietsch, Absolut $p$-summierende Abbildungen in normierten Räumen, Studia Math. 28 (1966/67), 333–353 (German). MR 216328, DOI 10.4064/sm-28-3-333-353
- M. A. Rieffel, The Radon-Nikodym theorem for the Bochner integral, Trans. Amer. Math. Soc. 131 (1968), 466–487. MR 222245, DOI 10.1090/S0002-9947-1968-0222245-2
- M. A. Rieffel, Dentable subsets of Banach spaces, with application to a Radon-Nikodým theorem, Functional Analysis (Proc. Conf., Irvine, Calif., 1966) Academic Press, London; Thompson Book Co., Washington, D.C., 1967, pp. 71–77. MR 0222618
- C. P. Stegall and J. R. Retherford, Fully nuclear and completely nuclear operators with applications to ${\cal L}_{1}-$ and ${\cal L}_{\infty }$-spaces, Trans. Amer. Math. Soc. 163 (1972), 457–492. MR 415277, DOI 10.1090/S0002-9947-1972-0415277-3 C. P. Stegall, An operator characterization of spaces whose duals are ${L^1}(\mu )$, Israel J. Math. (to appear).
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 195-198
- MSC: Primary 46B05; Secondary 47B10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0312213-0
- MathSciNet review: 0312213