On the smoothness of eigenfunctions of hyponormal singular integral operators
HTML articles powered by AMS MathViewer
- by Kevin Clancey
- Proc. Amer. Math. Soc. 31 (1972), 475-479
- DOI: https://doi.org/10.1090/S0002-9939-1972-0284873-4
- PDF | Request permission
Abstract:
Fix $\varphi \in {L^\infty }(E)$ and let $E \subset R$ be bounded and measurable; for $1 < p < \infty$ consider the bounded linear operator \[ Tf(s) = sf(s) + \frac {{\varphi (s)}}{\pi }\int _E^\ast \frac {{\bar \varphi (t)f(t)}}{{t - s}}dt\;{\mkern 1mu} {\text {a}}{\text {.e}}{\text {. }}s \in E\] where $f \in {L^p}(E)$. If $\nu = \lambda + i\mu \in C$ then there are no nonzero ${L^p}(E)$ solutions of $Tf = \nu f$ for $p > 2$ in case $\lambda$ is a point of positive Lebesgue density in the complement of $E$.References
- C. R. Putnam, The spectra of semi-normal singular integral operators, Canadian J. Math. 22 (1970), 134–150. MR 259680, DOI 10.4153/CJM-1970-017-7
- Kevin Clancey, Seminormal operators with compact self-commutators, Proc. Amer. Math. Soc. 26 (1970), 447–454. MR 265976, DOI 10.1090/S0002-9939-1970-0265976-5 F. G. Tricomi, Integral equations, Interscience, New York, 1968.
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- C. R. Putnam, Eigenvalues and boundary spectra, Illinois J. Math. 12 (1968), 278–282. MR 226440
- J. G. Stampfli, Analytic extensions and spectral localization, J. Math. Mech. 16 (1966), 287–296. MR 0196500, DOI 10.1512/iumj.1967.16.16019
- Béla Sz.-Nagy and Ciprian Foiaş, Une relation parmi les vecteurs propres d’un opérateur de l’espace de Hilbert et de l’opérateur adjoint, Acta Sci. Math. (Szeged) 20 (1959), 91–96 (French). MR 110020
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 475-479
- DOI: https://doi.org/10.1090/S0002-9939-1972-0284873-4
- MathSciNet review: 0284873