C-EMBEDDED SUBSETS OF PRODUCTS

N. NOBLE

Abstract. It is shown that each dense subset of \mathbb{R}^n is z-embedded, from which it follows that a dense subset is C-embedded if and only if it is $G_δ$-dense. These results extend to, for example, all products of separable metric spaces.

All spaces are assumed to be completely regular Hausdorff; R denotes the real line and vX the Hewitt realcompactification of X. Recall that a subset A of Y is z-embedded in Y if each zero set of X is the intersection of X with some zero set of Y. A subset of Y is $G_δ$-dense in Y if it meets each nonempty $G_δ$-set of Y, and the $G_δ$-closure of a subset is the largest subspace in which it is $G_δ$-dense.

Theorem 1. For X a dense subset of \mathbb{R}^n, the following conditions are equivalent:

(i) Some superset of X in \mathbb{R}^n is vX;
(ii) the $G_δ$-closure of X in \mathbb{R}^n is vX;
(iii) the $G_δ$-closure of X in \mathbb{R}^n is realcompact.

Corollary. For $X \subseteq \mathbb{R}^n$, $vX = R$ if and only if X is $G_δ$-dense.

Theorem 1 follows immediately from the fact that each space is $G_δ$-dense in its Hewitt realcompactification but is not $G_δ$-dense in any larger space, a theorem of Hager and Johnson that a GV-dense subset is C-embedded if and only if it is z-embedded [2, Proposition 3] and the following:

Theorem 2. Each dense subspace of \mathbb{R}^n is z-embedded.

Proof. Let X be a dense subspace of \mathbb{R}^n and let Z be a zero set in X, say $Z = \bigcap U_n$ where each U_n is open and contains the closure in X of U_{n+1}. Let F_n be the closure of U_n in \mathbb{R}^n; then $F_n \cap X = \text{cl}(U_n)$ so for $F = \bigcap F_n$, $F \cap X = Z$. Thus it suffices to show that F is a zero set.

Since X is dense, each F_n is the closure of its interior, so by [6, Theorem 3] each F_n has the form $π_n^{-1}(H_n)$ where $π_n$ is the projection onto some
countable subproduct and H_n is a closed subspace of that subproduct. It follows that F also has this form, say $F=\pi^{-1}(H)$. But like any closed subset of R^{n_1}, H is a zero set. Therefore F is a zero set, as desired.

Notice by the same proof, Theorem 2 holds with R^n replaced by any product space Y satisfying:

(i) Each finite subproduct of Y (and hence Y itself [5, Corollary 1.4]) satisfies the countable chain condition, so the structure theorem for regular closed sets holds [5, Proposition 2.2].

(ii) Each finite subproduct of Y (and hence each countable subproduct of Y, by [3, Proposition 2.1]) is perfect, i.e., has each closed subset a G_δ.

(iii) Each countable subproduct of Y has each closed G_δ a zero set.

In particular, Theorems 1 and 2 hold with R^n replaced by any product of separable metric spaces. Regarding further generalizations, note that if X and Y are pseudocompact subsets of βN which contain N and for which $X \times Y$ is not pseudocompact, then $X \times Y$ is G_δ-dense in $\beta N \times \beta N$ but is not z-embedded (since if it were it would be C^*-embedded which, by Glicksberg’s Theorem, is the case only if $X \times Y$ is pseudocompact). Theorem 1 will be applied in [4] to characterize spaces Y for which $C(Y)$ is realcompact in various standard function space topologies.

REFERENCES

Canary Road, Westlake, Oregon 97493