$H$-spaces which are co-$H$-spaces
HTML articles powered by AMS MathViewer
- by Robert W. West
- Proc. Amer. Math. Soc. 31 (1972), 580-582
- DOI: https://doi.org/10.1090/S0002-9939-1972-0285006-0
- PDF | Request permission
Abstract:
It is shown that a space, having the homotopy type of a CW complex of finite type, admitting both $H$-space and co-$H$-space structures must have the homotopy type of a point or an $n$-sphere for $n = 1$, 3 or 7.References
- J. F. Adams and G. Walker, An example in homotopy theory, Proc. Cambridge Philos. Soc. 60 (1964), 699–700. MR 166786, DOI 10.1017/S0305004100077422
- M. L. Curtis and J. Dugundji, Groups which are cogroups, Proc. Amer. Math. Soc. 22 (1969), 235–237. MR 251722, DOI 10.1090/S0002-9939-1969-0251722-X
- P. J. Hilton, An introduction to homotopy theory, Cambridge Tracts in Mathematics and Mathematical Physics, No. 43, Cambridge, at the University Press, 1953. MR 0056289, DOI 10.1017/CBO9780511666278
- P. J. Hilton and S. Wylie, Homology theory: An introduction to algebraic topology, Cambridge University Press, New York, 1960. MR 0115161, DOI 10.1017/CBO9780511569289
- C. S. Hoo, Multiplication on spaces with comultiplication, Canad. Math. Bull. 12 (1969), 499–505. MR 253334, DOI 10.4153/CMB-1969-064-3
- John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211–264. MR 174052, DOI 10.2307/1970615
- Jean-Pierre Serre, Homologie singulière des espaces fibrés. Applications, Ann. of Math. (2) 54 (1951), 425–505 (French). MR 45386, DOI 10.2307/1969485
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
- George W. Whitehead, Homotopy theory, Massachusetts Institute of Technology, Mathematics Department, Cambridge, Mass., 1953. Compiled by Robert J. Aumann. MR 0091469
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 580-582
- DOI: https://doi.org/10.1090/S0002-9939-1972-0285006-0
- MathSciNet review: 0285006