A COMPACTIFICATION OF LOCALLY COMPACT SPACES

F. W. LOZIER

ABSTRACT. Every locally compact space X has its topology determined by its 1-1 compact images and hence has a compactification \(\xi X \) obtained as the closure of the natural embedding of X in the product of those images, just as the Stone-Čech compactification \(\beta X \) can be obtained by embedding X in a product of intervals. The obvious question is whether \(\xi X = \beta X \). In this paper we prove that \(\xi X = \beta X \) if X either is 0-dimensional or contains an arc, and give an example in which \(\xi X \neq \beta X \).

Preliminaries. All maps are continuous, and all compact and locally compact spaces are Hausdorff. For any space X, let \(\mathcal{K}(X) \) denote the set of all 1-1 maps of X onto a compact space, let \(Y = \prod \{ f(X) \mid f \in \mathcal{K}(X) \} \) and let \(e: X \to Y \) be the evaluation map; if e is a homeomorphism then \(cl_Y e(X) \) is a compactification of X which we denote by \(\xi X \). If X is locally compact then e is necessarily a homeomorphism because for any closed \(F \subseteq X \) there is an \(f \in \mathcal{K}(X) \) such that \(f(F) \) is closed in \(f(X) \); choose \(x \in F \), let \(X' \) be the set X with the topology consisting of all open \(U \subseteq X \) such that either \(x \notin U \) or \(X - U \) is compact, and let \(f: X \to X' \) be the natural map. Note that, by a standard argument, \(\xi X \) is the smallest compactification of X to which every \(f \in \mathcal{K}(X) \) can be extended.

Proposition. Suppose that for any two disjoint zero-sets \(Z_1 \) and \(Z_2 \) of a locally compact space X there is a map f from X into a compact subspace Y of X such that \(f(Z_1) \) and \(f(Z_2) \) have disjoint closures. Then \(\xi X = \beta X \).

Proof. Let \(e: \beta X \to \xi X \) be the Stone extension of the embedding \(e: X \to \xi X \). Since e is a homeomorphism it follows that \(e(\beta X - X) = \xi X - e(X) \); hence we need only show that \(e(p) \neq e(q) \) for any two distinct \(p, q \in \beta X - X \). Let \(A_p \) and \(A_q \) be the free z-ultrafilters on X converging to \(p \) and \(q \), respectively, choose disjoint \(Z_1 \in A_p \) and \(Z_2 \in A_q \), and let f and Y be as hypothesized. Then let \(\tilde{f}: \beta X \to Y \) be the Stone extension of f, let \(Y' = \tilde{f}(\beta X - X) \), let \(X' = (\beta X - X) \cup Y' \), and define \(g: X' \to Y' \) by requiring that...
$g(x)$ be $f(x)$ or x according as $x \in \beta X - X$ or $x \in Y'$. Since $\beta X - X$ and Y' are disjoint closed subsets of βX, g is continuous. Therefore, since X' is compact and Y' in Hausdorff, $\mathcal{D}' = \{g^{-1}(y) \mid y \in Y'\}$ is a closed, upper semicontinuous decomposition of X', i.e., $\bigcup \{D \in \mathcal{D}' \mid D \cap F \neq \emptyset\}$ is closed for every closed $F \subseteq X'$. As a consequence, if $\mathcal{D} = \mathcal{D}' \cup \{\{x\} \mid x \in \beta X - Y'\}$ then, for any closed $F \subseteq \beta X$,

$$\bigcup \{D \in \mathcal{D} \mid D \cap F \neq \emptyset\} = F \cup \left(\bigcup \{D \in \mathcal{D}' \mid D \cap (F \cap X') \neq \emptyset\}\right)$$

is closed in βX, so that \mathcal{D} is a closed, upper semicontinuous decomposition of βX. Thus, if h is the projection of βX onto the quotient space determined by \mathcal{D}, then $h(\beta X)$ is Hausdorff and hence compact. Let $k = h|X$. Then $k \in \mathcal{K}(X)$ so that there is a map $\tilde{k} : \xi X \rightarrow k(X)$ such that $\tilde{k} \circ e = k$. Now $Z_1 \in \mathcal{A}_p$ so that $p \in \text{cl}_{\beta X} Z_1$ and hence $g(p) = \tilde{f}(p) \in \text{cl} f(Z_1)$. Similarly, $g(q) \in \text{cl} f(Z_2)$. Therefore, since $\text{cl} f(Z_1)$ and $\text{cl} f(Z_2)$ are disjoint, it follows that $g(p) \neq g(q)$ and hence, by the definition of h, that $h(p) \neq h(q)$. But $k \circ \tilde{e}$ and h agree on the dense subset X of βX so that $k \circ \tilde{e} = h$. Hence $\tilde{e}(p) \neq \tilde{e}(q)$, as required.

Corollary 1. If a locally compact space is 0-dimensional in the sense of [3], then $\xi X = \beta X$.

Proof. Any two disjoint zero-sets Z_1 and Z_2 of X are contained in disjoint open sets U_1 and U_2 whose union is X. Choose $x_i \in U_i$, let $Y = \{x_1, x_2\}$, and define $f : X \rightarrow Y$ by requiring $f(x) = x_i$ if $x \in U_i$.

Corollary 2. If a locally compact space X contains an arc, then $\xi X = \beta X$.

Proof. By assumption, there is a map $g : [0, 1] \rightarrow X$ such that $g(0) \neq g(1)$. For any two disjoint zero-sets Z_1 and Z_2 of X, there is a map $h : X \rightarrow [0, 1]$ such that $h(Z_1) = 0$ and $h(Z_2) = 1$. Let $f = g \circ h$.

Example. According to Cook [1] there is a nontrivial, compact, connected space which admits no map into itself other than the identity map and the constant maps. Let C be such a space and let x be the first ordinal with $\text{card} x > \text{card} C$. Note that necessarily card x is uncountable. Now let x_1 and x_2 be distinct points of C, let p be a point not in C, and set $H = C \times [0, x] \times [0, x]$ and $K = \{p\} \times [0, x] \times [0, x]$. Then

$$A = \{(x_1) \times \{x\} \times [0, x] \} \cup \{(x_2) \times \{x\} \times [0, x] \}$$

is closed in H and the map $\theta : A \rightarrow K$ defined by requiring $f((x, \beta, \gamma)) = (p, \beta, \gamma)$ is continuous, so that [2, VI.6.1 and VII.3.4] the space $Y = H \cup K$ obtained by “attaching H to K by θ” is compact. Let $\psi : Y' \rightarrow Y$ be the quotient map. Let

$$X' = Y' - ((C \cup \{p\}) \times \{x\} \times \{x\})$$
and let $X = \psi(X')$. Then $Y - X = \psi(Y' - X')$ is closed in Y, and hence X is locally compact. Moreover, X is dense in Y so that, in order to show that $\beta X = Y$, it suffices to show that any $f \in C^*(X)$ can be extended to $f \in C^*(Y)$. But $\hat{g} = f \circ \psi(X') \in C^*(X')$ so that, by standard techniques [3, 8L and 9K], one can show that there is a $\beta < \alpha$ such that g is constant on $X' \cap \{x\} \times [\beta, \alpha] \times [\beta, \alpha])$ for all $x \in C \cup \{p\}$. Hence g can be extended to $\hat{g} \in C^*(Y')$ by setting $\hat{g}(\langle x, \alpha, \alpha \rangle) = g(\langle x, \beta, \beta \rangle)$. Moreover, $\hat{g}(\langle x_1, \alpha, \alpha \rangle) = g(\langle x_1, \beta, \beta \rangle) = g(\langle p, \alpha, \beta \rangle) = g(\langle p, \beta, \beta \rangle) = g(\langle p, \alpha, \alpha \rangle)$ and, similarly, $\hat{g}(\langle x_2, \alpha, \alpha \rangle) = g(\langle p, \alpha, \alpha \rangle)$ so that there is an $\hat{f} \in C^*(Y)$ such that $\hat{f} \circ \psi = \hat{g}$, the continuity of \hat{f} following from the fact that ψ is a quotient map. Clearly \hat{f} is the desired extension of f so that $\beta X = Y$ as asserted.

Now consider any $f \in C^*(X)$, let $\tilde{f}: Y \to f(X)$ be the Stone extension of f, and let $D = f^{-1}(\tilde{f}(Y - X))$. Then D is a closed subset of X with card $D \leq$ card $(Y - X) = \text{card } C < \text{card } \alpha$, so that $\psi^{-1}(D)$ is a closed subset of X' of cardinality less than card α and hence, by a standard argument, compact. Thus D is compact and hence a continuous image of $Y - X$ under the map $f^{-1} \circ \tilde{f}$. But $Y - X$ is just C with the points x_1 and x_2 identified, so that D is a continuous image of C under a map which is not 1-1. Therefore, since every component of X is either a singleton or a homeomorph of C, it follows that D consists of a single point. Thus $\tilde{f}(Y - X)$ is a singleton so that f can be extended to the one-point compactification of X obtained by identifying $Y - X$ into a point. Hence ξX is just the one-point compactification of X; in particular, $\xi X \neq \beta X$.

Remark. The obvious open problem is to find an internal characterization of the locally compact spaces X for which $\xi X = \beta X$.

REFERENCES

DEPARTMENT OF MATHEMATICS, CLEVELAND STATE UNIVERSITY, CLEVELAND, OHIO 44115