REGULAR COMPACTIFICATIONS OF CONVERGENCE SPACES

G. D. RICHARDSON AND D. C. KENT

Abstract. This note gives a simple characterization for the class of convergence spaces for which regular compactifications exist and shows that each such convergence space has a largest regular compactification.

Introduction. It has been shown by Wyler [5] that for every Hausdorff convergence space S there is a regular (including Hausdorff) compact convergence space S^* and a continuous map $j:S\rightarrow S^*$ with the following property: for every continuous map $f:S\rightarrow T$, where T is regular and compact, there is a unique continuous map $g:S^*\rightarrow T$ such that $f=g\circ j$. Richardson [4] obtained a similar result, but with the following important distinctions: (1) the compactification space S^* is Hausdorff but not necessarily regular (for convergence spaces, Hausdorff plus compact does not imply regular); (2) the map j is a dense embedding. But there is in general no largest Hausdorff compactification, and indeed the number of distinct maximal Hausdorff compactifications can be quite large.

The conclusions of both [4] and [5] suggest that a more satisfactory compactification theory for convergence spaces might result from an investigation of regular compactifications, although it is known (see [2]) that there are regular convergence spaces which cannot be embedded in any compact regular space. What we obtain in this note is a characterization of the class of convergence spaces for which regular compactifications exist, and we show that each such convergence space has a largest regular compactification.

1. For basic information about convergence spaces the reader is asked to refer to [1] and [2]. If there is no possibility of confusion, a convergence space (S, q) will be denoted simply by S. A space is regular if it is Hausdorff and has the property: F converges to x implies that the closure of F (denoted $\text{cl } F$) converges to x. We shall denote by $\text{cl}_S A$ the closure of a subset A of a convergence space S. The pretopological modification πS of a convergence space (S, q) is the space (S, p), where p is the finest pretopology...
on S coarser than q; the topological modification λS is defined analogously. Recall that $\pi S = \lambda S$ iff the closure operator cl_S is idempotent.

If A is a subset of a convergence space S, then the subspace defined by A (also denoted by A) is given as follows: A filter F on A A-converges to x in A iff the filter on S generated by F S-converges to x.

Proposition 1. The closure operator for a compact regular convergence space is idempotent.

Proof. Let S be compact and regular, A a subset of S. By the theorem of [4], the identity map from A into S has a continuous extension f to A^*, the Stone-Čech compactification of A. Since $f(\text{cl}_{A^*} A)=f(A^*) \subseteq \text{cl}_S A$ by continuity of f and $f(A^*)$ is compact and hence S-closed, it follows that $\text{cl}_S A$ is closed.

Proposition 2. If A is a subspace of S, then πA is the subspace of πS determined by A.

Proposition 3. If A is a subspace of a compact regular convergence space, then πA is Hausdorff and topological.

Proof. Let S be a compact regular convergence space containing A. By Proposition 2 it suffices to show that πS is Hausdorff and topological; that it is topological follows from Proposition 1. To see that πS is Hausdorff, let F be an ultrafilter in πS which converges to both x and y. By compactness F converges in S to some point z and regularity guarantees that $\text{cl}_S F$ also converges in S to z. But each neighborhood of x is in F, so x is in each member of $\text{cl}_S F$ and hence the Hausdorffness of S implies that $x=z$. Similarly, $y=z$, and so $x=y$.

2. A compactification (T, f) of a convergence space S consists of a compact convergence space T along with a dense embedding f of S into T. For a different definition, see §7 of [3].

If (T, f) is a compactification of S, then it is a simple matter to verify that $(\pi T, f)$ is a compactification of πS. From this fact and Proposition 3 we deduce the next result.

Proposition 4. If (T, f) is a regular compactification of S, then $(\pi T, f)$ is a Hausdorff (topological) compactification of πS.

Theorem 1. A regular convergence space S has a regular compactification iff πS is a completely regular topological space and each ultrafilter which is finer than the neighborhood filter at x S-converges to x for all x in S.

Proof. Assume the given conditions. Then πS has a topological compactification (T, f). Let T_1 be the convergence space consisting of the set T equipped with the finest convergence structure τ on T which satisfies the following conditions: if $f(S)$ belongs to \mathcal{G}, then $\text{cl}_T \mathcal{G} \tau$-converges to x.
in \(f(S) \) iff \(f^{-1}(\mathcal{G}) \) \(S \)-converges to \(f^{-1}(x) \); if \(\mathcal{F} \) is an ultrafilter such that \(T - f(S) \) belongs to \(\mathcal{F} \), then \(\text{cl}_T(\mathcal{F}) \) \(r \)-converges to \(x \) in \(f(S) \) iff \(\mathcal{F} \) \(T \)-converges to \(x \); if \(\mathcal{H} \) is an ultrafilter on \(T \), then \(\text{cl}_T \mathcal{H} \) \(r \)-converges to \(y \) in \(T - f(S) \) iff \(\mathcal{H} \) \(T \)-converges to \(y \).

By this construction, it is clear that \(T_1 \) and \(T \) coincide relative to ultrafilter convergence, and so the closure operators for these spaces coincide. The fact that \(T_1 \) is regular can be established with the aid of the following lemma: If \(\mathcal{F} \) is an ultrafilter on \(T - f(S) \) which \(T \)-converges to \(x \) in \(f(S) \), then there is an ultrafilter \(\mathcal{G} \) on \(S \) which \(S \)-converges to \(f^{-1}(x) \) such that \(f^{-1}(\text{cl}_T \mathcal{F}) \supseteq \text{cl}_S \mathcal{G} \). Finally, it is easy to establish that \(f:S\to T_1 \) is a dense embedding.

If \(S \) has a regular compactification \((T,f)\), then \(\pi S \) is a completely regular topological space by Proposition 3. To show that \(S \) has the second property, let \(\mathcal{F} \) be an ultrafilter finer than the \(S \)-neighborhood filter at \(x \). Let \(y \) be the point in \(T \) to which \(f(\mathcal{F}) \) \(T \)-converges. Since \(f(\mathcal{F}) \) is finer than the neighborhood filter for \(f(x) \), \(f(x) \supseteq \text{cl}_T f(\mathcal{F}) \), and so necessarily \(y = f(x) \). Thus \(f^{-1}(f(\mathcal{F})) = \mathcal{F} \) \(S \)-converges to \(x \) since \(f \) is an embedding.

A regular compactification \(T \) of a convergence space \(S \) is a Stone-Šech regular compactification if each continuous function from \(S \) into a compact regular space has a continuous extension to \(T \).

Theorem 2. If a convergence space has a regular compactification, then it has a Stone-Šech regular compactification.

Proof. Let \(S \) be a convergence space with a regular compactification; let \((T,f)\) be the (topological) Stone-Šech compactification of \(\pi S \), and let \((T_1,f)\) be the regular compactification of \(S \) constructed above. If \(g \) is any continuous function from \(S \) into a compact regular space \(R \), then \(g: \pi S \to \pi R \) has a unique continuous extension \(h:T \to \pi R \) such that \(h \circ f = g \), and it follows easily that \(h:T_1 \to R \) is also continuous.

References

Department of Mathematics, East Carolina University, Greenville, North Carolina 27834

Department of Mathematics, Washington State University, Pullman, Washington 99163