Regular compactifications of convergence spaces
HTML articles powered by AMS MathViewer
- by G. D. Richardson and D. C. Kent
- Proc. Amer. Math. Soc. 31 (1972), 571-573
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286074-2
- PDF | Request permission
Abstract:
This note gives a simple characterization for the class of convergence spaces for which regular compactifications exist and shows that each such convergence space has a largest regular compactification.References
- D. C. Kent, Convergence quotient maps, Fund. Math. 65 (1969), 197–205. MR 250258, DOI 10.4064/fm-65-2-197-205
- D. C. Kent and G. D. Richardson, Minimal convergence spaces, Trans. Amer. Math. Soc. 160 (1971), 487–499. MR 286063, DOI 10.1090/S0002-9947-1971-0286063-1
- J. F. Ramaley and Oswald Wyler, Cauchy spaces. I. Structure and uniformization theorems, Math. Ann. 187 (1970), 175–186. MR 266141, DOI 10.1007/BF01432251
- G. D. Richardson, A Stone-Čech compactification for limit spaces, Proc. Amer. Math. Soc. 25 (1970), 403–404. MR 256336, DOI 10.1090/S0002-9939-1970-0256336-1 O. Wyler, The Stone-Čech compactification for limit spaces, Notices Amer. Math. Soc. 15 (1968), 169. Abstract #653-306.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 571-573
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286074-2
- MathSciNet review: 0286074