PSEUDO-ISOTOPIES OF ARCS AND KNOTS

CARL D. SIKKEMA

Abstract. The purpose of this paper is to show that if an arc or simple closed curve contains a nontrivial Wilder arc, then it is not possible to transform a straight line segment onto the arc or a knot onto the simple closed curve. The proof uses the fact that every knot has a unique finite decomposition into prime knots.

A pseudo-isotopy is a homotopy F_t, $0 \leq t \leq 1$, such that F_t is a homeomorphism for $t < 1$. An arc A is locally unknotted [4] if for each $x \in A$ there is a neighborhood of x in A that lies on a disk. It is known [5], [6], [7] that if M is a 2-manifold, a locally unknotted arc or a locally unknotted simple closed curve in E^3 and if $\varepsilon > 0$, then there is a polyhedral manifold $N \subset E^3$, homeomorphic to M, and an ε-pseudo-isotopy F_ε of E^3 that transforms N onto M. In addition, $F_0 = 1$, $F_1|N$ is a homeomorphism of N onto M and the set of points whose preimages under F_1 are nondegenerate is a zero-dimensional subset of the set of wild points of M.

An arc is mildly wild if it is the union of two tame arcs. A Wilder arc [3] is a mildly wild locally peripherally unknotted [4] arc. See Example 1.4 of [1]. The following theorems show that the result above cannot be extended to all arcs and simple closed curves.

Theorem 1. If A is an arc that contains a nontrivial Wilder arc, I is a straight line segment, and $F_t : E^3 \to E^3$ is a pseudo-isotopy, then $F_1(I) \neq A$.

Theorem 2. If S is a simple closed curve that contains a nontrivial Wilder arc, k is a knot, and $F_t : E^3 \to E^3$ is a pseudo-isotopy, then $F_1(k) \neq S$.

However, it is trivial that any arc or simple closed curve can be transformed by a pseudo-isotopy onto a straight line segment or a circle, respectively.

Theorem 1 follows immediately from Theorem 2.

Proof of Theorem 2. Let C be a geometric cone in E^3 with vertex p and square base F_0. For each integer $i > 0$, let F_i be the intersection of C and the plane parallel to F_0 that is half way between F_{i-1} and p. Let C_i be

Received by the editors February 11, 1971.

Key words and phrases. Arc, knot, pseudo-isotopy, Wilder arc, simple closed curve.

1 This research was partially supported by the National Science Foundation, Grant GP-11943.
the closed subset of C between F_i and F_{i+1}. Since S contains a nontrivial Wilder arc, we can assume without loss of generality that $S \cap C_0$ is a straight line segment A_0 and, for $i > 0$, that $S \cap C_i$ is a polyhedral arc A_i that meets the boundary of C_i only at the endpoints of A_i and the mid-points of F_i and F_{i+1} such that A_i plus an arc on the boundary of C_i is a nontrivial knot.

Suppose there is a knot k in E^3 and a pseudo-isotopy $F_t: E^3 \rightarrow E^3$ such that $F_t(k) = S$. For each integer $i \geq 0$, let N_i be a regular neighborhood of A_i in C_i such that $N_i \cap F_{i+1} = N_{i+1} \cap F_{i+1}$.

Let n be a positive integer. There exists a $t < 1$ such that

$$F_t(k) \cap \left(\bigcup_{i=0}^{n+1} C_i \right) \subset \bigcup_{i=0}^{n+1} N_i.$$ We may suppose without loss of generality that $F_t(k) \cap C_0 = A_0$. Then there is a homeomorphism $h: E^3 \rightarrow E^3$ such that

$$h(A_0) = \bigcup_{i=0}^{n} A_i = h(F_t(k)) \cap \left(\bigcup_{i=0}^{n} C_i \right).$$

Since k and $hF_t(k)$ are equivalent, k can be decomposed into at least n knots for every n. But every knot has a unique finite decomposition into prime knots [2]. Hence no such pseudo-isotopy exists.

References

FLORIDA STATE UNIVERSITY, TALLAHASSEE, FLORIDA 32306