A property of arithmetic sets
HTML articles powered by AMS MathViewer
- by Hisao Tanaka
- Proc. Amer. Math. Soc. 31 (1972), 521-524
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286661-1
- PDF | Request permission
Abstract:
We shall show that every nonempty countable arithmetic subset of ${N^N}$ contains at least one element $\alpha$ such that the singleton $\{ \alpha \}$ itself is arithmetic. The proof is carried out by using a method in classical descriptive set theory.References
- H. Hahn, Reelle Funktionen, Akademie Verlagsgesellschaft, Leipzig, 1932; reprint, Chelsea, New York, 1948.
- Joseph Harrison, Recursive pseudo-well-orderings, Trans. Amer. Math. Soc. 131 (1968), 526–543. MR 244049, DOI 10.1090/S0002-9947-1968-0244049-7
- S. C. Kleene, Arithmetical predicates and function quantifiers, Trans. Amer. Math. Soc. 79 (1955), 312–340. MR 70594, DOI 10.1090/S0002-9947-1955-0070594-4 A. R. D. Mathias, A survey of recent results in set theory, Proc. Sympos. Pure Math., vol. 13, part 2 (to appear).
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 521-524
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286661-1
- MathSciNet review: 0286661