A generalization of Mori’s theorem
HTML articles powered by AMS MathViewer
- by Chin-pi Lu
- Proc. Amer. Math. Soc. 31 (1972), 373-375
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286786-0
- PDF | Request permission
Abstract:
In this article, we consider a generalization of Mori’s theorem which is: Let $R$ be a Zariski ring; if the completion of $R$ is a unique factorization domain, then so is $R$.References
- Bernard Ballet, Structure des anneaux strictement linéairement compacts commutatifs, C. R. Acad. Sci. Paris Sér. A-B 266 (1968), A1113–A1116 (French). MR 244233 N. Bourbaki, Algèbre commutative. Chaps. 1, 2, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
- J. Dazord, Anneau filtré de Gelfand, Publ. Dép. Math. (Lyon) 3 (1966), no. fasc. 1, 41–53 (French). MR 207768
- Jean Dazord, Sur les anneaux filtrés de Gelfand, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A326–A328 (French). MR 194473
- Pierre Samuel, On unique factorization domains, Illinois J. Math. 5 (1961), 1–17. MR 121382
- P. Samuel, Anneaux factoriels, Sociedade de Matemática de São Paulo, São Paulo, 1963 (French). Rédaction de Artibano Micali. MR 0156867
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 373-375
- MSC: Primary 13.90
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286786-0
- MathSciNet review: 0286786