Divinsky’s radical
HTML articles powered by AMS MathViewer
- by Patrick N. Stewart
- Proc. Amer. Math. Soc. 31 (1972), 347-353
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286823-3
- PDF | Request permission
Abstract:
Let $F$ and $R$ be rings, $M$ an $F - R$-bimodule, and $\Delta$ the largest $F$-submodule $N$ of $M$ such that for each $x \in N,fx = x$ for some $f \in F$. (1) If either $F$ or $M$ satisfies the minimum condition then $\Delta = {F^k}M$ for some positive integer $k$; provided that whenever $x \in {F^\omega }M = \cap _{n = 1}^\infty ({F^n}M)$ and $Fx \subseteq \Delta$, then $x \in \Delta$. (2) If $M$ satisfies the maximum condition and $F = ({f_1}, \cdots ,{f_n})$ where ${f_1}, \cdots ,{f_n}$ is a normalising set of generators (that is, \[ {f_i}F = F{f_i}\operatorname {modulo} ({f_1}, \cdots ,{f_{i - 1}})\] for each $i = 1, \cdots ,n)$, then $\Delta = {F^\omega }M$. (3) If $M = F = R,\Delta = (0)$, $R$ satisfies the maximum condition, and $R$ has a normalising set of generators, then $R$ can be embedded in a Jacobson radical ring.References
- V. A. Andrunakievič, Semiradical rings, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 129–178 (Russian). MR 0024894
- F. A. Bostock and E. M. Patterson, A generlisation of Divinsky’s radical, Proc. Glasgow Math. Assoc. 6 (1963), 75–87 (1963). MR 166216, DOI 10.1017/S2040618500034778
- N. J. Divinsky, $D$-regularity, Proc. Amer. Math. Soc. 9 (1958), 62–71. MR 93528, DOI 10.1090/S0002-9939-1958-0093528-3
- Nathan Divinsky, Rings and radicals, Mathematical Expositions, No. 14, University of Toronto Press, Toronto, Ont., 1965. MR 0197489
- Christian W. Kroener, On radical rings, Rend. Sem. Mat. Univ. Padova 41 (1968), 261–275. MR 257127
- J. C. McConnell, The intersection theorem for a class of non-commutative rings, Proc. London Math. Soc. (3) 17 (1967), 487–498. MR 210738, DOI 10.1112/plms/s3-17.3.487
- J. C. McConnell, Localisation in enveloping rings, J. London Math. Soc. 43 (1968), 421–428. MR 228532, DOI 10.1112/jlms/s1-43.1.421
- Y. Nouazé and P. Gabriel, Idéaux premiers de l’algèbre enveloppante d’une algèbre de Lie nilpotente, J. Algebra 6 (1967), 77–99 (French). MR 206064, DOI 10.1016/0021-8693(67)90015-4
- P. F. Smith, On the intersection theorem, Proc. London Math. Soc. (3) 21 (1970), 385–398. MR 294382, DOI 10.1112/plms/s3-21.3.385
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 347-353
- MSC: Primary 16.30
- DOI: https://doi.org/10.1090/S0002-9939-1972-0286823-3
- MathSciNet review: 0286823