AN EXTENSION OF THE NOETHER-DEURING THEOREM

KL AUS W. RO GGENKAMP

Abstract. Let R be a commutative semilocal noetherian ring, Λ a left noetherian R-algebra and M, N finitely generated left Λ-modules such that $\text{End}_\Lambda(M)$ is of finite type over R. By \hat{R} we denote the (rad R)-adic completion of R.

Theorem. M is Λ-isomorphic to a direct summand of N iff $\hat{R} \otimes_R M$ is $\hat{R} \otimes_R \Lambda$-isomorphic to a direct summand of $\hat{R} \otimes_R N$.

This result is used to prove a generalization of the Noether-Deuring theorem. Let S be a commutative R-algebra which is a faithful projective R-module of finite type; then M is Λ-isomorphic to a direct summand of N iff $S \otimes_R M$ is $S \otimes_R \Lambda$-isomorphic to a direct summand of $S \otimes_R N$.

Let R be a semilocal commutative noetherian ring with Jacobson radical $J(R)$ and denote by \hat{R} the $J(R)$-adic completion of R; let S be a commutative R-algebra such that $S = \hat{R} \otimes_R S$ is a faithful projective R-module of finite type. As a generalization of the Noether-Deuring theorem for integral representations we shall prove

Theorem I. Let Λ be a left noetherian R-algebra, and M, N finitely generated left Λ-modules such that $\text{End}_\Lambda(M)$ is of finite type over R. Then M is Λ-isomorphic to a direct summand of N if and only if $S \otimes_R M$ is $S \otimes_R \Lambda$-isomorphic to a direct summand of $S \otimes_R N$.

It has been pointed out to me by the referee that this is part of a result of A. Grothendieck [8, Proposition 2.5.8.(a)]. A similar statement has also been proven by Białyńicki-Birula [4] using noncommutative Amitsur cohomology and the "théorie de déscente". Our theorem here is the result of an attempt to give a simplified proof of one of the theorems in Białyńicki-Birula's paper.

We shall keep the notation introduced above throughout the paper, and to simplify the notation, we shall write $X \mid Y$ to indicate that X is isomorphic to a direct summand of Y. The key role in our proof of
Theorem I is played by

Theorem II. Let Λ be a left noetherian R-algebra, and M, N finitely generated left Λ-modules such that $\text{End}_\Lambda(M)$ is of finite type over R. Then

$$M \mid N \text{ as } \Lambda\text{-modules if and only if } \hat{R} \otimes_R M \mid \hat{R} \otimes_R N \text{ as } \hat{R} \otimes_R \Lambda\text{-modules.}$$

We remark that in both theorems the condition that $\text{End}_\Lambda(M)$ is of finite type over R is surely satisfied if M is of finite type over R; in fact, $R(a) \rightarrow M \rightarrow 0$ exact, implies $0 \rightarrow \text{End}_\Lambda(M) \rightarrow M(a)$ exact, and so $\text{End}_{\hat{R}}(M)$ is of finite type over R, R being noetherian. But $\text{End}_\Lambda(M) \rightarrow \text{End}_\Lambda(M)$ and so $\text{End}_\Lambda(M)$ is of finite type over R.

Proof of Theorem II. It suffices to prove one direction. So let us assume $\hat{R} \otimes_R M \mid \hat{R} \otimes_R N$ as $\hat{R} \otimes_R \Lambda$-modules. This is equivalent to the existence of a split monomorphism

$$0 \longrightarrow \hat{R} \otimes_R M \longrightarrow \hat{R} \otimes_R N.$$

Since \hat{R} is a faithfully flat R-module (cf. Bourbaki [6, Chapitre III, §3, No 5]) and since M is a finitely generated left module over the left noetherian ring Λ, we have natural isomorphisms (cf. Auslander-Goldman [1, Lemma 2.4]) for any left Λ-module X.

(1) $\hat{R} \otimes_R \text{Ext}^i_\Lambda(M, X) \cong \text{Ext}^i_{\hat{R} \otimes_R \Lambda}(\hat{R} \otimes_R M, \hat{R} \otimes_R X)$ for $i = 0, 1, \ldots$.

Using this isomorphism for $i = 0$ and identifying both structures, we may write

$$\hat{\sigma} = \sum_{i=1}^n \hat{r}_i \otimes \sigma_i, \quad \hat{r}_i \in \hat{R}, \sigma_i \in \text{Hom}_\Lambda(M, N), 1 \leq i \leq n.$$

However, $R(J(R) \cong \hat{R} \otimes_R J(R)$, and so we can find elements $r_i \in R$, $1 \leq i \leq n$, such that $\hat{r}_i \otimes \sigma_i \in \hat{R} \otimes_R J(R) = J(\hat{R})$. To prove Theorem II, we have to establish the existence of a split monomorphism $0 \rightarrow M \rightarrow N$. We claim that $\sigma = \sum_{i=1}^n r_i \sigma_i \in \text{Hom}_\Lambda(M, N)$ has the desired properties. Since \hat{R} is a faithfully flat R-module, it suffices to show that $1_{\hat{R} \otimes_R} \sigma$ is a split monomorphism. In fact, assuming that $1_{\hat{R} \otimes_R} \sigma$ is a split monomorphism, σ must be monic, and it remains to show that the sequence

$$E : 0 \rightarrow M \rightarrow N \rightarrow N/\text{Im } \sigma \rightarrow 0$$

is split exact. We consider the R-submodule X of $\text{Ext}^1_\Lambda(N/\text{Im } \sigma, M)$ generated by the class of E. Because of the isomorphism (1) for $i = 1$ we have $\hat{R} \otimes_R X = 0$ and so X must be zero; i.e., E is split exact. It remains to show that $1_{\hat{R} \otimes_R} \sigma$ is a split monomorphism. Since σ was a split monomorphism to start with, there exists $\tilde{\sigma} \in \text{Hom}_{\hat{R} \otimes_R \Lambda}(\hat{R} \otimes_R N, \hat{R} \otimes_R M)$ such
that $\delta \hat{\varphi} = 1_{\hat{R} \otimes R M}$. But then
\[
(1_B \otimes \sigma) \hat{\varphi} - 1_{\hat{R} \otimes R M} = (1_B \otimes \sigma - \delta) \hat{\varphi} = \left[\sum_{i=1}^{n} (r_i - \hat{r}_i) \otimes \sigma_i \right] \hat{\varphi} \in J(\hat{R}) \text{End}_{\hat{R} \otimes R \Lambda}(\hat{R} \otimes R M).
\]

But $\text{End}_{\hat{R} \otimes R \Lambda}(\hat{R} \otimes R M)$ is of finite type over \hat{R} and so $J(\hat{R}) \text{End}_{\hat{R} \otimes R \Lambda}(\hat{R} \otimes R M)$ is contained in the Jacobson radical of $\text{End}_{\hat{R} \otimes R \Lambda}(\hat{R} \otimes R M)$ (cf. Bourbaki \[5, \text{Chapitre VIII, §6, N° 3, Théorème 2}\]) and so $(1_B \otimes \sigma) \hat{\varphi}$ is a unit in $\text{End}_{\hat{R} \otimes R \Lambda}(\hat{R} \otimes R M)$; i.e., $1_B \otimes \sigma$ is a split monomorphism and so $M \cong \bar{N}$. Q.E.D.

Corollary 1. Let Λ be an R-algebra and M a finitely presented left Λ-module such that $\text{End}_{\Lambda}(M)$ is of finite type over R and N a left Λ-module. Then $M \cong \bar{N}$ if and only if $\hat{R} \otimes R M \cong \hat{R} \otimes R N$.

The proof is similar to the one of Theorem II; however, we do not need the assumption that Λ is left noetherian, since (1) is valid for $i=0$ also for a finitely presented Λ-module M.

Remark. Under the assumptions of Corollary 1, the Krull-Schmidt theorem is valid for the indecomposable direct summands of $\hat{R} \otimes R M$. For this it suffices to know, that for each indecomposable direct summand X of $\hat{R} \otimes R M$, the ring $\text{End}_{\hat{R} \otimes R \Lambda}(X)$ is complete with respect to the topology induced by $J(\hat{R}) \text{End}_{\hat{R} \otimes R \Lambda}(X)$ (cf. Bass \[3, \text{Chapter III, Proposition 2.10}\]); but this is clear since $\text{End}_{\hat{R} \otimes R \Lambda}(X)$ is of finite type over \hat{R} (cf. Bourbaki \[6, \text{Chapitre III, §3, N° 4, Théorème 3}\]).

Corollary 2. Under the assumptions of Corollary 1, let X be a finitely presented left Λ-module such that $\text{End}_{\Lambda}(M \oplus X)$ is of finite type over R. Then $M \oplus X \cong N \oplus X$ implies $M \cong N$.

Proof. This is an immediate consequence of Corollary 1 and the Remark.

Corollary 3. Under the assumptions of Corollary 1, $M^{(n)} \cong N^{(n)}$ implies $M \cong N$.

Proof. This follows from Corollary 1 and the Remark.

Corollary 4. Let $\mu_{\Lambda}(X)$ denote the minimal number of Λ-generators of the left Λ-module X, where Λ is an R-algebra. Assume that M is a finitely presented left Λ-module which is of finite type over R. Then $\mu_{\Lambda}(M) \leq n$ if and only if $\mu_{\hat{R} \otimes R \Lambda}(\hat{R} \otimes R M) \leq n$.

Proof. Since the tensor product is right exact, it suffices to prove one direction. Let $\mu_{\hat{R} \otimes R \Lambda}(\hat{R} \otimes R M) \leq n$. Then we have an epimorphism
\[
(\hat{R} \otimes R \Lambda)^{(n)} \xrightarrow{\delta} \hat{R} \otimes R M \longrightarrow 0.
\]
As in the proof of Theorem II, we construct \(\sigma \in \text{Hom}_A(\Lambda^{(n)}, M) \) such that
\[(1_R \otimes \sigma) - \delta \in J(\bar{R})\text{Hom}_{R \otimes R A}(\bar{R} \otimes_R \Lambda^{(n)}, \bar{R} \otimes_R M). \]
But then \(\text{Im}(1_R \otimes \sigma) + J(\bar{R})(\bar{R} \otimes_R M) = \bar{R} \otimes_R M \) and Nakayama's Lemma shows that \(1_R \otimes \sigma \) must be an epimorphism. However, \(\bar{R} \otimes_R \) — is faithfully flat, and so \(\varphi \) is an epimorphism.

Finally we turn to the proof of Theorem I.

It suffices to prove one direction. Let \(S \otimes_R M | S \otimes_R N \). Then \(S \otimes_R M | S \otimes_R N \) as \(S \otimes_R \Lambda \)-modules. However, \(J(R) = \cap_{i=1}^s m_i \), where \(\{m_i\}_{1 \leq i \leq s} \) are the maximal ideals of \(R \). Then \(\bar{R} = \prod_{i=1}^s \bar{R}_i \) is the product of complete local rings. Since we have assumed \(S \otimes_R \) to be a faithful projective \(\bar{R} \)-module of finite type, we have
\[
S \cong \bigoplus_{i=1}^s \bar{R}_i^{(n_i)}, \quad n_i > 0, \quad 1 \leq i \leq s.
\]
Thus \(S \otimes_R M | S \otimes_R N \) as \(S \otimes_R \Lambda \)-modules implies
\[
(\bar{R}_i \otimes_R M)^{(n_i)} | (\bar{R}_i \otimes_R N)^{(n_i)}, \quad 1 \leq i \leq s
\]
as \(\bar{R}_i \otimes_R \Lambda \)-modules. Now the Krull-Schmidt theorem shows
\[
\bar{R}_i \otimes_R M | \bar{R}_i \otimes_R N, \quad 1 \leq i \leq s,
\]
and so \(\bar{R} \otimes_R M | \bar{R} \otimes_R N \). An application of Theorem II gives the desired result: \(M | N \). Q.E.D.

References

Mathematische Fakultät, Universität Bielefeld, 48 Bielefeld, Kurt-Schumacherstrasse 6, West Germany