On asymptotic behavior of perturbed nonlinear systems
HTML articles powered by AMS MathViewer
- by R. E. Fennell and T. G. Proctor
- Proc. Amer. Math. Soc. 31 (1972), 499-504
- DOI: https://doi.org/10.1090/S0002-9939-1972-0287099-3
- PDF | Request permission
Abstract:
A version of the variation of constants formula for nonlinear systems is used to study the comparative asymptotic behavior of the systems $x’ = f(t,x)$ and $y’ = f(t,y) + g(t,y)$.References
- Fred Brauer, Perturbations of nonlinear systems of differential equations, J. Math. Anal. Appl. 14 (1966), 198–206. MR 192132, DOI 10.1016/0022-247X(66)90021-7
- Fred Brauer and James S. W. Wong, On asymptotic behavior of perturbed linear systems, J. Differential Equations 6 (1969), 142–153. MR 239213, DOI 10.1016/0022-0396(69)90122-3
- W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath and Company, Boston, Mass., 1965. MR 0190463
- T. G. Hallam and J. W. Heidel, The asymptotic manifolds of a perturbed linear system of differential equations, Trans. Amer. Math. Soc. 149 (1970), 233–241. MR 257486, DOI 10.1090/S0002-9947-1970-0257486-0
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- J. A. Marlin and R. A. Struble, Asymptotic equivalence of nonlinear systems, J. Differential Equations 6 (1969), 578–596. MR 252768, DOI 10.1016/0022-0396(69)90010-2
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 499-504
- DOI: https://doi.org/10.1090/S0002-9939-1972-0287099-3
- MathSciNet review: 0287099