The Lie algebra of the structure group of a power-associative algebra.
HTML articles powered by AMS MathViewer
- by D. R. Scribner
- Proc. Amer. Math. Soc. 31 (1972), 363-367
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288154-4
- PDF | Request permission
Abstract:
For a strictly power-associative algebra $A$ with identity let $S$ be the span of the transitivity set of the identity under the action of the structure group. The main result of the paper is that the Lie algebra of the structure group is a subalgebra of the direct sum of the derivation algebra of ${A^ + }$ and the space of left multiplications in ${A^ + }$ by elements of $S$, and is equal to this sum if the characteristic is 0. It is also shown that $S$ is a Jordan subalgebra of ${A^ + }$.References
- Hel Braun and Max Koecher, Jordan-Algebren, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 128, Springer-Verlag, Berlin-New York, 1966 (German). MR 0204470, DOI 10.1007/978-3-642-94947-0 C. Chevalley, Théorie des groupes de Lie, Hermann, Paris, 1968.
- Nathan Jacobson, Structure and representations of Jordan algebras, American Mathematical Society Colloquium Publications, Vol. XXXIX, American Mathematical Society, Providence, R.I., 1968. MR 0251099, DOI 10.1090/coll/039
- Kevin McCrimmon, Generically algebraic algebras, Trans. Amer. Math. Soc. 127 (1967), 527–551. MR 210758, DOI 10.1090/S0002-9947-1967-0210758-8
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 363-367
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288154-4
- MathSciNet review: 0288154