POLYÁ'S PROPERTY W AND FACTORIZATION—
A SHORT PROOF

ROBERT RISTROPH

ABSTRACT. For an nth order linear differential expression, the
equivalence of Pólya's Property W and factorization into first order
expressions is proven directly and briefly.

The usual proof that a linear differential expression with Pólya's
Property W admits a factorization into first order expressions employs
Jacobi's formula for the minors of the adjugate matrix [1]. (For Jacobi's
theorem, see [2].) A simple, direct proof is given here based on the
following two elementary lemmas.

Lemma 1. If I is an open interval, $f \in C^1(I)$, f is nonzero on I, and

$$J(y) = f(d/dx)(y^{-1})$$

then $J(f) = 0$ and J is a first order linear differential expression with leading
coefficient equal to one.

Proof. The lemma is verified by an easy computation.

Notation. If $\{h_k\}_{k=1}^m \subset C^m(I)$, we let $W(h_1, \cdots, h_m)$ denote the
Wronskian determinant of this set of functions.

Lemma 2. If $\{h_k\}_{k=1}^m \subset C^m(I)$, $W(h_1, \cdots, h_m)(x) \neq 0$, $\forall x \in I$, and

$$K(y) = W(h_1, h_2, \cdots, h_m, y)[W(h_1, h_2, \cdots, h_m)]^{-1}$$

then K is the unique mth order linear differential expression with leading
coefficient equal to one for which $\{h_k\}_{k=1}^m$ is a fundamental set.

Proof. Expansion of the determinant in terms of $y^{(k)}$, $k = 0, \cdots, m$,
and the corresponding cofactors verifies the form of $K(y)$. If K_1 were a
second such expression, then $K(y) - K_1(y)$ would be of order $(m-1)$ with
m linearly independent solutions.

Received by the editors March 19, 1971 and, in revised form, June 21, 1971.

AMS 1970 subject classifications. Primary 34C10; Secondary 34C10.

Key words and phrases. Linear differential expression, Wronskian determinant,
fundamental set of solutions, Pólya's Property W, factorization of a differential
expression.
Theorem. Let \(L(y) \) be a linear differential expression of order \(n \) with continuous coefficients and with leading coefficient equal to one. Let \(\{h_k\}_{k=1}^n \) be a fundamental set for \(L \) such that \(W_m(x) = W(h_1, \ldots, h_m)(x) \neq 0 \), \(\forall x \in I \), \(m = 1, \ldots, n-1 \). Then

\[
L(y) = \frac{W_n}{W_{n-1}} \frac{d}{dx} \frac{W_{n-2}}{W_{n-2}} \frac{d}{dx} \cdots \frac{d}{dx} \frac{W_2}{W_1} \frac{d}{dx} \frac{W_1}{W_1} \frac{d}{dx} \frac{y}{W_1}.
\]

Proof. Set \(W_0 = 1 \). Set

\[
L_k(y) = \frac{W_k}{W_{k-1}} \frac{d}{dx} \left(\frac{W_{k-1}}{W_k} y \right), \quad k = 1, \ldots, n.
\]

Then \(L_1(h_1) = 0 \), and \(L_1 \) has leading coefficient equal to one. Inductively, we assume \(L_k(L_{k-1}(\cdots L_2(L_1(y))\cdots)) = (\prod_{i=1}^k L_i)(y) \) maps \(h_m \) to zero for \(m = 1, \ldots, k \) and has leading coefficient equal to one. Then

\[
(\prod_{i=1}^k L_i)(h_{k+1}) = W_{k+1}^{-1} W_k
\]

by Lemma 2. So \(L_{k+1}(\prod_{i=1}^k L_i(h_{k+1})) = 0 \) by Lemma 1. The composition of two expressions with leading coefficient equal to one is again of that form. Thus \(\prod_{i=1}^n L_i \) has \(\{h_k\}_{k=1}^n \) as a fundamental set. Hence, by Lemma 2, \(\prod_{i=1}^n L_i = L \).

The author expresses his thanks to Anton Zettl for introducing him to the subject.

References

Northern Illinois University, De Kalb, Illinois 60115