An algebraic proof that $[\Omega ^{U}]_{2}=\mathfrak {N}^{2}$
HTML articles powered by AMS MathViewer
- by Don Porter
- Proc. Amer. Math. Soc. 31 (1972), 605-608
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288773-5
- PDF | Request permission
Abstract:
It is often desirable to find the image of one cobordism theory in another. Milnor settled the first problem of this sort, the image of complex cobordism in unoriented cobordism, by construction of concrete generating manifolds. When such constructions are too difficult, it still may be possible to solve the problem using more algebraic methods. This note offers a proof of Milnor’s result which depends on the Adams spectral sequence and requires no ad hoc construction of manifolds.References
- D. W. Anderson, E. H. Brown Jr., and F. P. Peterson, $\textrm {SU}$-cobordism, $\textrm {KO}$-characteristic numbers, and the Kervaire invariant, Ann. of Math. (2) 83 (1966), 54–67. MR 189043, DOI 10.2307/1970470
- P. E. Conner and E. E. Floyd, Torsion in $\textrm {SU}$-bordism, Mem. Amer. Math. Soc. 60 (1966), 74. MR 189044
- P. E. Conner and P. S. Landweber, The bordism class of an $\textrm {SU}$-manifold, Topology 6 (1967), 415–421. MR 212812, DOI 10.1016/0040-9383(67)90028-6
- A. L. Liulevicius, A proof of Thom’s theorem, Comment. Math. Helv. 37 (1962/63), 121–131. MR 145527, DOI 10.1007/BF02566966
- Arunas Liulevicius, Notes on homotopy of Thom spectra, Amer. J. Math. 86 (1964), 1–16. MR 166787, DOI 10.2307/2373032
- J. Milnor, On the cobordism ring $\Omega ^{\ast }$ and a complex analogue. I, Amer. J. Math. 82 (1960), 505–521. MR 119209, DOI 10.2307/2372970
- J. Milnor, On the Stiefel-Whitney numbers of complex manifolds and of spin manifolds, Topology 3 (1965), 223–230. MR 180977, DOI 10.1016/0040-9383(65)90055-8
- S. P. Novikov, Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855–951 (Russian). MR 0221509
- Robert E. Stong, Notes on cobordism theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. Mathematical notes. MR 0248858
- R. E. Stong, Some remarks on symplectic cobordism, Ann. of Math. (2) 86 (1967), 425–433. MR 219079, DOI 10.2307/1970608
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 605-608
- MSC: Primary 57.10
- DOI: https://doi.org/10.1090/S0002-9939-1972-0288773-5
- MathSciNet review: 0288773