On the exponent of the ideal class groups of complex quadratic fields.
HTML articles powered by AMS MathViewer
- by David W. Boyd and H. Kisilevsky
- Proc. Amer. Math. Soc. 31 (1972), 433-436
- DOI: https://doi.org/10.1090/S0002-9939-1972-0289454-4
- PDF | Request permission
Abstract:
Let $m(d)$ denote the exponent of the ideal class group of the complex quadratic field $Q(\surd d)$, where $d < 0$ is a fundamental discriminant. It is shown that there are only finitely many $d$ for which $m(d) = 3$. Assuming the extended Riemann Hypothesis, it is shown that $m(d) \to \infty {\text { as }}|d| \to \infty$.References
- N. C. Ankeny, The least quadratic non residue, Ann. of Math. (2) 55 (1952), 65–72. MR 45159, DOI 10.2307/1969420
- A. I. Borevich and I. R. Shafarevich, Number theory, Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. Translated from the Russian by Newcomb Greenleaf. MR 0195803 S. Chowla, An extension of Heilbronn’s class number theorem, Quart. J. Math. 5 (1934), 304-307. J. E. Littlewood, On the class number of the corpus $P(\surd - k)$, Proc. London Math. Soc. 27 (1927), 358-372.
- Hugh L. Montgomery, Topics in multiplicative number theory, Lecture Notes in Mathematics, Vol. 227, Springer-Verlag, Berlin-New York, 1971. MR 0337847, DOI 10.1007/BFb0060851
- Daniel Shanks, New types of quadratic fields having three invariants divisible by $3$, J. Number Theory 4 (1972), 537–556. MR 313220, DOI 10.1016/0022-314X(72)90027-3
- A. I. Vinogradov and Ju. V. Linnik, Hypoelliptic curves and the least prime quadratic residue, Dokl. Akad. Nauk SSSR 168 (1966), 259–261 (Russian). MR 0209223
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 433-436
- DOI: https://doi.org/10.1090/S0002-9939-1972-0289454-4
- MathSciNet review: 0289454