ISOMETRIES OF H^p SPACES OF THE TORUS

NAND LAL1 AND SAMUEL MERRILL III2

Abstract. Denote by H^p ($1 \leq p \leq \infty$) the Banach spaces of complex-valued functions in L^p of the torus whose Fourier coefficients vanish off a half plane determined by a lexicographic ordering. The surjective isometries of the spaces H^p ($p \neq 2$) are characterized in terms of unimodular functions on the circle and conformal maps of the disc. For $1 < p < \infty$ ($p \neq 2$) the proof depends upon a characterization of certain invariant subspaces previously given by the authors.

Let A be the algebra of continuous complex-valued functions on $\{ \lambda \in C: |\lambda| = 1 \}$ which are uniform limits of polynomials in λ. Denote by $H^p(d\theta)$ the closure of A in $L^p(d\theta)$ where $d\theta$ denotes normalized Lebesgue measure on the circle (norm closure for $1 \leq p < \infty$; w^* closure for $p = \infty$). It is well known that the Banach spaces $H^p(d\theta)$ may be identified with the Hardy classes by associating with each function in $H^p(d\theta)$ its analytic extension to the open unit disc via the Poisson integral.

DeLeeuw, Rudin, and Wermer [1], and independently Nagasawa [6], characterized the surjective isometries of $H^1(d\theta)$ and $H^1(d\theta)$. Forelli [2] extended the characterization to $H^p(d\theta)$ for $1 < p < \infty$, $p \neq 2$. We state their results in Propositions 1 and 2.

Proposition 1. A linear operator T of $H^\infty(d\theta)$ onto $H^\infty(d\theta)$ is an isometry if and only if

$$ (Tf)(\lambda) = \alpha f(\tau(\lambda)) \quad (f \in H^\infty(d\theta); |\lambda| = 1), $$

where α is a complex constant of modulus 1 and τ is a conformal map of the unit disc onto itself.

Presented to the Society, January 25, 1969, under the title, Some results on generalized H^p spaces; received by the editors March 29, 1971.

AMS 1970 Subject classifications. Primary 46E15, 46J15; Secondary 30A98, 43A15.

Key words and phrases. H^p spaces, isometries, torus, invariant subspace, conformal map, logmodular algebra, double Fourier coefficients.

1 This paper includes portions of the first author's doctoral thesis completed at the University of Rochester.

2 Partially supported by NSF Grant GP 22713 at the University of Rochester.

© American Mathematical Society 1972

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proposition 2. Let \(1 \leq p < \infty, p \neq 2 \). A linear operator \(T \) of \(H^p(d\theta) \) onto \(H^p(d\theta) \) is an isometry if and only if

\[
(Tf)(\lambda) = \alpha(\tau(\lambda))^{1/p}f(\tau(\lambda)) \quad (f \in H^p(d\theta); |\lambda| = 1),
\]

where \(\alpha \) and \(\tau \) are as in Proposition 1.

We denote by \(A(T^2) \) the algebra of continuous, complex-valued functions on the torus \(T^2 = \{(z, w): |z| = |w| = 1\} \) which are uniform limits of polynomials in \(z^m w^n \) where \((m, n) \in \mathcal{S} = \{(m, n): n > 0\} \cup \{(m, 0): m \geq 0\} \). Denoting normalized Haar measure on \(T^2 \) by \(dm \), we define \(H^p \) as the closure of \(A(T^2) \) in \(L^p(dm) \) (norm closure for \(1 \leq p < \infty \); \(w^* \) closure for \(p = \infty \)). The purpose of this paper is to present characterizations of the isometries of \(H^p \) onto \(H^p \) for \(1 \leq p \leq \infty, p \neq 2 \).

\(H^p \) consists of those functions in \(L^p(dm) \) whose double Fourier coefficients vanish off the half-plane \(\mathcal{S} \) which determines a lexicographic ordering. The maximal ideal space of \(A(T^2) \) can be identified with \((\{z: |z| = 1\} \times \{w: |w| \leq 1\}) \cup (\{z: |z| \leq 1\} \times \{0\}) \), with \(dm \) identified with \((z, w) = (0, 0) \). Since \(A(T^2) \) is a logmodular algebra we have at our disposal the results of [4].

We denote by \(Z \) and \(W \) the functions \(Z(z, w) = z \) and \(W(z, w) = w \). The closure in \(L^p(dm) \) of the polynomials in \(Z \) is denoted by \(Z^p \); the closure of the polynomials in \(Z^m W^n, n \geq 1 \), by \(P \); and finally the closure of the polynomials in \(Z \) and \(Z \) by \(L^p \). By [5, Lemma 5, p. 467],

\[
H^p = Z^p \oplus P
\]

for \(1 \leq p \leq \infty \), where \(\oplus \) denotes algebraic direct sum. A function \(f \) in \(H^p \) is inner if \(|f| \equiv 1 \); \(f \) is outer if \(f \cdot A(T^2) \) is dense in \(H^p \).

Theorem 1. A linear operator \(T \) of \(H^\infty \) onto \(H^\infty \) is an isometry if and only if

\[
(Tf)(z, w) = \alpha f(\tau(z), w\sigma(z)) \quad (f \in H^\infty; |z| = |w| = 1),
\]

where \(\alpha \) is a complex constant of modulus 1, \(\tau \) is a conformal map of the unit disc onto itself, and \(\sigma \) is a unimodular measurable function.

According to [1, Theorem 3, p. 695] it suffices to prove

Theorem 2. A linear operator \(\Psi \) of \(H^\infty \) onto \(H^\infty \) is an algebra automorphism if and only if

\[
(\Psi f)(z, w) = f(\tau(z), w\sigma(z)) \quad (f \in H^\infty; |z| = |w| = 1),
\]

where \(\tau \) and \(\sigma \) are as in Theorem 1.
LEMMA 1. If Ψ is an algebra automorphism of H^∞, then Ψ carries inner functions to inner functions, $\Psi Z^\infty = Z^\infty$, and $\Psi I^\infty = I^\infty$

PROOF. If F is inner but ΨF is not, then there exists $\varepsilon > 0$ such that $m(K)>0$ where $K = \{ x : |\Psi F(x)| < 1 - \varepsilon \}$. Choose $h \in H^\infty$ with $|h(x)| = 1$ on K and $|h(x)| = 1 - \varepsilon$ on $T^2 \setminus K$ [4, Theorem 5.9, p. 297]. If $\Psi g = h$, $\| Fg \|_\infty = 1$ but $\| \Psi(Fg) \|_\infty = \| (\Psi F)h \|_\infty \leq 1 - \varepsilon$. Thus ΨF is inner.

Let M be the closure of ΨI^∞ in $L^2(dm)$. M is clearly invariant under multiplication by functions in H^∞ and also by V where $V = \Psi Z$. For if $f \in I^\infty$, $fZ \in I^\infty$, so $\Psi f = \Psi(fZ)\Psi(Z)$ or $\Psi(fZ) = (\Psi f)(V)$.

If M has the form FH^2 for some inner function F, then $F \cdot \bar{V} \in M$ so $\bar{V} \in H^2$. But $\Psi Z \in H^2$ so it is a constant. This contradicts the fact that Ψ is injective, so $M \subseteq I^1$ [4, p. 293]. It follows, using (3), that $\Psi I^\infty \subseteq I^\infty$.

Applying the same argument to the automorphism Ψ^{-1}, we conclude that $\Psi^{-1}I^\infty = I^\infty$.

To show that $\Psi Z^\infty = Z^\infty$, it suffices to show that $\Psi Z \in Z^\infty$. Write $f = \Psi Z$ and suppose $f = f_1 + f_2$ where $f_1 \in Z^\infty$ and $f_2 \in I^\infty$. Then $I^\infty = \Psi(ZI^\infty) = I^\infty$, so $f_2 = fg$ for some $g \in I^\infty$. Thus $g = f_2 \bar{f} = (f - f_1) \bar{f} = 1 - f_1 \bar{f}$, which is orthogonal to I^∞. Thus g and hence f_2 vanish.

LEMMA 2. If $E_1 \in Z^\infty$ and $E_2 \in I^\infty$ are inner functions, and if for each Borel set $Y \subseteq T^2$, $\mu(Y) = m(X)$ where $X = \{(z,w) : (E_1(z), E_2(z,w)) \in Y\}$, then $\mu \ll m$.

PROOF. The Fourier-Stieltjes coefficients of μ are $\hat{\mu}(m,n) = \int E_1^m E_2^n dm$. Thus $\hat{\mu}(m,0) = a^m$ for $m \geq 0$ ($a = \int E_1 dm$). Since $E_2 \in I^\infty$, $\hat{\mu}(m,n) = 0$ for $n \geq 1$. It follows that μ is the product measure $\mu = Pdz \times dw = Qdm$, where $P(z) = (1 - |a|^2)(1 - |a z|^2)$, dz and dw are each Lebesgue measure, and $Q \in L^\infty(dm)$. In particular, if Y is m-null, then X is m-null. This argument is based on Forelli [2, p. 724].

PROOF OF THEOREM 2. By Lemma 1, $\Psi W \subseteq I^\infty$. In fact $\Psi W = W \sigma$ for some $\sigma(z) = \sigma(z,w) \in L^\infty$, as can be shown by an argument similar to that by which we showed $\Psi Z \subseteq Z^\infty$. Writing $\tau(z) = \tau(z,w) = (\Psi Z)(z,w)$, we see that τ is a conformal map of the disc by Proposition 1. Setting $E_1 = \tau$ and $E_2 = w\sigma$ in Lemma 2, we conclude that $f(\tau, w\sigma)$ is well defined for all measurable functions f. Thus (5) holds for all f in the algebra A generated by $Z^n W^n$, $(m,n) \in S$.

To establish (5) for all $f \in H^\infty$, it suffices to show that the automorphism $\Phi f = \Psi^{-1}(f(\tau, w\sigma))$ is the identity. We have seen that $\Phi Z = Z$ and $\Phi W = W$ and the proof of Proposition 1 shows that Φ is the identity on Z^∞. Thus it suffices to show that Φ is the identity on I^∞.

First we show that $\Phi(Z_K W) = Z_K W$ where Z_K is a characteristic function in L^∞. Since the function $\Phi(Z_K W)W$ is equal to its own square, it too is a characteristic function $Z_K \in L^\infty$. There remains only to show that $K = K'$.
or in fact that $K \subseteq K'$ since the argument also applies to Φ^{-1}. If not, there exists a nonzero continuous function $f \in L^\infty$ with zero set $K_1 \subseteq K/K'$ of positive measure. Then

$$0 = \Phi(fW)\Phi(\chi_{K_1}W) = fW\chi_{K_1}W.$$

(6)

Since $K_1 \subseteq K$, $K' \subseteq K'$, so f does not vanish on K_1. This contradicts (6).

Thus $\Phi(\chi_KW) = \chi_KW$, and in general for $g \in L^\infty$, $\Phi(gW^n) = gW^n$ ($n \geq 1$). If $g \in L^\infty$, $g = \sum_{i=1}^n g_iW' + hW^n$ where $g_i \in L^\infty$ and $h \in L^\infty$. Since $\Phi g = \sum_{i=1}^n g_iW' + (\Phi h)W^n$ where $\Phi h \in L^\infty$, the Fourier coefficients of g and Φg agree, so $\Phi g = g$.

Remark. Using essentially the same argument we can show that the automorphisms of $A(T^2)$ are also given by (5) except that here σ is continuous. However, this can more easily be done by considering the homeomorphisms of the maximal ideal space of $A(T^2)$ induced by the automorphisms of the algebra.

Theorem 3. A linear operator T of H^p onto H^p ($1 \leq p < \infty$, $p \neq 2$) is an isometry if and only if

$$\Phi f(z, w) = \Phi \left(\alpha(T) f(z) \right) \frac{1}{\|f\|_p} f(z, w),$$

(7)

for all $f \in H^p$, where $|z| = |w| = 1$, α is a complex constant of modulus 1, τ is a conformal map of the unit disc onto itself, and σ is a unimodular measurable function on the circle.

The proof depends on our results in [5] on the characterization of sesqui-invariant subspaces of H^p. A closed subspace $M \subseteq H^p$ is called invariant if $fM \subseteq M$ for all $f \in H^\infty$. An invariant subspace $M \subseteq H^p$ is called sesqui-invariant if $ZM \subseteq M$ and simply invariant if this is not the case. If M is sesqui-invariant, it has the form

$$M = \chi_E \cdot \psi \cdot \Pi^p$$

where ψ is unimodular and χ_E is the characteristic function of the support set of M ([5, Theorem 3, p. 471]; see also [5, p. 473 for the torus case]). If M is simply invariant, it has the form $M = \psi H^p$ (ψ unimodular) by the generalized Beurling theorem [8].

Lemma 3. Let $F = T(1)$ and E be the support set of F. Then $m(E) = 1$.

Proof. Since $F \in H^p$, χ_E is independent of w, so $G = w(1 - \chi_E) \in H^p$. Let $g = T^{-1}(G)$. Thus

$$\int |1 \pm g|^p \, dm = \int |F \pm G|^p \, dm$$

$$= \int |F|^p \, dm + \int |G|^p \, dm = 1 + \int |g|^p \, dm.$$
Therefore
\[\int |1 + g|^p \, dm + \int |1 - g|^p \, dm = 2 \left[1 + \int |g|^p \, dm \right]. \]

By [7, p. 275], \(g = 0 \) a.e., so \(m(E) = 1 \).

Proof of Theorem 3. Lemma 3 insures that \(dv = |F|^p \, dm \) and \(dm \) are mutually absolutely continuous. Using Forelli’s argument [2, Proposition 2, p. 723] it follows that \(Sf = Tf/F \) defines an isometry \(S \) of \(H^p \) into \(L^p(dv) \) which takes the algebra \(\mathcal{A} \) generated by \(Z^m W^n, (m, n) \in \mathcal{I} \), multiplicatively into \(L^\infty(dv) \). Write \(E_1 = S(Z) \) and \(E_2 = S(W) \). For \(f \in \mathcal{A} \), we have

\[(8) \quad Tf(z, w) = F \cdot f(E_1, E_2). \]

We show that \(E_1 \in Z^\infty \) and \(E_2 \in L^\infty \). Since \(F \in H^p \), the sesqui-invariant subspace generated by \(F \) has the form \(JF \), where \(J \) is unimodular. Thus \(F = JG \) where \(G \in P \) and the sesqui-invariant subspace generated by \(G \) is \(P \). For \(f \in S(\mathcal{A}) \), \(WF \in F \), and the property of \(G \) insures that \(W^2 Jf \in F \). Thus the invariant subspace generated by \(S(\mathcal{A}) \) has the form \(\psi P \) or \(\psi H^p \), \(\psi \) unimodular.

In the first case \(f \psi W \in \psi P \), so \(f \in L^\infty \) for all \(f \in S(\mathcal{A}) \) and similarly for the second case. In particular \(E_1 \in L^\infty \) and \(E_2 \in L^\infty \). The same argument applied to the algebra generated by \(Z^n W^m, n \geq 1 \), shows that \(E_1 \in L^\infty \) and \(E_2 \in L^\infty \).

We conclude that \(F \notin P \) (otherwise \(T \) would map \(H^p \) onto \(P \)). Thus \(\int \log |F| \, dm > -\infty \), so \(F = JG \) where now \(J \) is inner and \(G \) is outer. Also \(\{ fE_1^m \}, m \geq 0 \), generate a simply invariant subspace, so by the usual argument \(E_1 \in Z^\infty \). Since \(G \) is outer, the invariant subspace \(N \) generated by \(\{ JE_1^m E_2^n \}, n > 0 \), is contained in \(H^p \). Since \(N = \psi H^p \) would imply that \(E_1 \in H^p \), we have \(N \subseteq P \) so \(Je_1 \in P \), \(J \in H^p \) but \(J \notin P \) (because \(F \notin P \)), so \(E_2 \in L^\infty \). Thus \(T \) takes \(P \) into \(P \).

Thus using Lemma 2, \(f(E_1, E_2) \) is well defined for all measurable functions \(f \). The density of \(\mathcal{A} \) in \(H^p, 1 \leq p < \infty \), insures that \((8) \) holds for all \(f \in H^p \). Imitating Forelli’s argument [2, p. 726] one shows that the function \(Q \) constructed in the proof of Lemma 2 satisfies

\[(9) \quad \int_X |F|^p \, dm = \int_X 1/Q(E_1) \, dm \]

for all Borel sets \(X \subseteq T^3 \). Since \(T \) is surjective, both \(T \) and \(T^{-1} \) carry \(P \) into \(P \), so that \(TP = P \). Again using the argument of [2] (beginning at the bottom of p. 726) it follows that \(E_1 \), considered as a function of \(z \) alone, is a.e. the boundary value function of a conformal map \(\tau_1 \) of the disc onto itself. Define \(\tau(z, w) = \tau_1(z) \). We have \(|\tau'| = 1/Q(\tau) \) and \((9) \) becomes
\[\int_X |F|^p \, dm = \int_X |\tau'| \, dm \]

for all Borel sets \(X \subseteq T^2 \). Thus \(F \) and \((\tau')^{1/p}\) have the same modulus. Since the latter is outer, we can show that they differ by a constant of modulus one by showing \(F \) is outer. If \(F = JG \), \(J \) inner and \(G \) outer, then \(GH^p = H^p = TH^p = FH^p \). Dividing by \(G \), \(H^p = JH^p \), so \(J \equiv \alpha \), \(|\alpha| = 1\).

To complete the proof it suffices to show that \(E_\sigma = W_\sigma \) where \(\sigma \in L^\infty \).

For this we need to show that \(\sigma I^p = I^p \) (see the analogous argument for \(p = \infty \)). But since \(F \) and \(1/F \) are bounded, \(\sigma I^p = \overline{W(SW)(SI^p)} = \overline{WS(WI^p)} = \overline{WWI^p} = I^p \).

For the case \(p = 1 \), Theorem 3 can also be obtained by adapting the original argument of deLeeuw, Rudin and Wermer [1, Theorem 2, p. 694] in which they deduce the isometries of \(H^1(d\theta) \) by exploiting the special properties of the extreme points of the unit ball of \(H^1(d\theta) \). To do this one needs three facts about functions on the torus: (a) the extreme points of the unit ball of \(H^1 \) are the outer functions of norm one (Gamelin [3]), (b) the identity \(\int f \, dm = \int (\tau, w) \tau' \, dm \) (a straightforward calculation), and (c) the result of Lemma 4 below. Let \(B^* \) be the set of extreme points in the unit ball of \(H^1 \), \(P(m) = \{z: |z| < 1\} \times \{0\} \), and \(D_z = \{z\} \times \{w: |w| < 1\} \) for each \(|z| = 1 \).

LEMMA 4. A function \(f \in H^1 \) of norm 1 lies in the closure of \(B^* \) if and only if

(10) \(f \) has no zeros on \(P(m) \) and \(f \) has no zeros on \(D_z \) for almost all \(z \).

PROOF. If \(f \) lies in the closure of \(B^* \), then there exist \(f_n \in B^* \) converging uniformly on compact sets to \(f \) on \(P(m) \) and on each \(D_z \) for almost all \(z \).

(10) follows.

Conversely suppose (10) holds. Define \(f_r(z, w) = f(\frac{z}{r}, rw) \), \(0 < r < 1 \). Let \(f_r = F_r g_r, F_r \) inner, \(g_r \) outer. One shows that \(F_r \) is independent of \(r \), say \(F_r = F \in \mathbb{C}^* \). Let \(h_r(z, w) = F(rz) \). Then \(f \) is the \(L^1 \) limit of the outer functions \(h_r g_r \), so \(f \) lies in the closure of \(B^* \).

REFERENCES

DEPARTMENT OF MATHEMATICS, NORTH TEXAS STATE UNIVERSITY, DENTON, TEXAS 76201

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ROCHESTER, ROCHESTER, NEW YORK 14627