Equivariant bordism and cyclic groups
HTML articles powered by AMS MathViewer
- by Peter S. Landweber
- Proc. Amer. Math. Soc. 31 (1972), 564-570
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296969-1
- PDF | Request permission
Abstract:
For a finite cyclic group $G$ the equivariant complex bordism module $\Omega _\ast ^U(G)$ is shown to be a free module over $\Omega _\ast ^U$.References
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- P. E. Conner and E. E. Floyd, Maps of odd period, Ann. of Math. (2) 84 (1966), 132–156. MR 203738, DOI 10.2307/1970515
- P. E. Conner and Larry Smith, On the complex bordism of finite complexes, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 117–221. MR 267571
- Tammo tom Dieck, Faserbündel mit Gruppenoperation, Arch. Math. (Basel) 20 (1969), 136–143 (German). MR 245027, DOI 10.1007/BF01899003
- R. E. Stong, Complex and oriented equivariant bordism, Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969) Markham, Chicago, Ill., 1970, pp. 291–316. MR 0273644
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 564-570
- MSC: Primary 57D85
- DOI: https://doi.org/10.1090/S0002-9939-1972-0296969-1
- MathSciNet review: 0296969