Representations of Euler classes
HTML articles powered by AMS MathViewer
- by Howard Osborn
- Proc. Amer. Math. Soc. 31 (1972), 340-346
- DOI: https://doi.org/10.1090/S0002-9939-1972-0300303-8
- PDF | Request permission
Abstract:
For any endomorphism $K$ of an oriented module $F$ with inner product there is an element ${\text {pf }}K$ in the ground ring $R$, a constant multiple of the classical pfaffian in the case $F = {R^{2n}}$. If $R$ is the algebra of even-dimensional differential forms on a smooth manifold, and if $F$ is the tensor product of $R$ and the module of sections of an oriented $2n$-plane bundle, then any connection in the bundle induces a curvature transformation $K:F \to F$ for which ${(4\pi )^{ - n}}{\text {pf }}K$ represents the Euler class. Properties of Euler classes are immediate consequences of corresponding properties of ${\text {pf}}$.References
- André Avez, Formule de Gauss-Bonnet-Chern en métrique de signature quelconque, Rev. Un. Mat. Argentina 21 (1963), 191–197 (1963) (French). MR 169199
- Armand Borel, Sur une généralisation de la formule de Gauss-Bonnet, An. Acad. Brasil. Ci. 39 (1967), 31–37 (French). MR 222816
- Shiing-shen Chern, Pseudo-Riemannian geometry and the Gauss-Bonnet formula, An. Acad. Brasil. Ci. 35 (1963), 17–26. MR 155261
- Harley Flanders, On free exterior powers, Trans. Amer. Math. Soc. 145 (1969), 357–367. MR 249417, DOI 10.1090/S0002-9947-1969-0249417-6
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15 Vol. II, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1969. MR 0238225 H. Osborn, Differential geometry in PL (to appear).
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 340-346
- MSC: Primary 57D20; Secondary 13C99
- DOI: https://doi.org/10.1090/S0002-9939-1972-0300303-8
- MathSciNet review: 0300303