Inadequacy of ordinary homology theory
HTML articles powered by AMS MathViewer
- by T. Y. Lin
- Proc. Amer. Math. Soc. 31 (1972), 617-619
- DOI: https://doi.org/10.1090/S0002-9939-1972-0307241-5
- PDF | Request permission
Abstract:
Counterexamples to the homology version of Peterson’s theorem are constructed. Namely, maps are exhibited which theoretically cannot be detected by any primary or higher order homology operations.References
- J. F. Adams, Lectures on generalised cohomology, Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three), Springer, Berlin, 1969, pp. 1–138. MR 0251716
- T. Y. Lin, Homological algebra of stable homotopy ring $\pi _{^{\ast } }$ of spheres, Pacific J. Math. 38 (1971), 117–143. MR 307233 —, Homological dimension of ${\pi _\ast }$-modules and their geometric characterizations, Trans. Amer. Math. Soc. (to appear).
- Peter Freyd, Stable homotopy, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 121–172. MR 0211399
- Daniel M. Kan and George W. Whitehead, On the realizability of singular cohomology groups, Proc. Amer. Math. Soc. 12 (1961), 24–25. MR 123319, DOI 10.1090/S0002-9939-1961-0123319-6
- Franklin P. Peterson, Functional cohomology operations, Trans. Amer. Math. Soc. 86 (1957), 197–211. MR 105679, DOI 10.1090/S0002-9947-1957-0105679-9
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 31 (1972), 617-619
- MSC: Primary 55G37
- DOI: https://doi.org/10.1090/S0002-9939-1972-0307241-5
- MathSciNet review: 0307241